mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 17:41:37 +08:00
215 lines
8.4 KiB
Python
215 lines
8.4 KiB
Python
"""
|
|
---
|
|
title: Adam Optimizer
|
|
summary: A simple PyTorch implementation/tutorial of Adam optimizer
|
|
---
|
|
|
|
# Adam Optimizer
|
|
|
|
This is a [PyTorch](https://pytorch.org) implementation of popular optimizer *Adam* from paper
|
|
[Adam: A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980v9).
|
|
|
|
*Adam* update is,
|
|
|
|
\begin{align}
|
|
m_t &\leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t \\
|
|
v_t &\leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \cdot g_t^2 \\
|
|
\hat{m}_t &\leftarrow \frac{m_t}{1-\beta_1^t} \\
|
|
\hat{v}_t &\leftarrow \frac{v_t}{1-\beta_2^t} \\
|
|
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
|
|
\end{align}
|
|
|
|
where $\alpha$, $\beta_1$, $\beta_2$ and $\epsilon$ are scalar hyper parameters.
|
|
$m_t$ and $v_t$ are first and second order moments.
|
|
$\hat{m}_t$ and $\hat{v}_t$ are biased corrected moments.
|
|
$\epsilon$ is used as a fix for division by zero error, but also acts as a form of a hyper-parameter
|
|
that acts against variance in gradients.
|
|
|
|
Effective step taken assuming $\epsilon = 0$ is,
|
|
$$\Delta t = \alpha \cdot \frac{\hat{m}_t}{\hat{v}_t}$$
|
|
This is bounded by,
|
|
$$\vert \Delta t \vert \le \alpha \cdot \frac{1 - \beta_1}{\sqrt{1-\beta_2}}$$
|
|
when $1-\beta_1 \gt \sqrt{1-\beta_2}$
|
|
and
|
|
$$\vert \Delta t\vert \le \alpha$$
|
|
otherwise.
|
|
And in most common scenarios,
|
|
$$\vert \Delta t \vert \approx \alpha$$
|
|
"""
|
|
|
|
import math
|
|
from typing import Dict, Any, Tuple, Optional
|
|
|
|
import torch
|
|
from labml import tracker
|
|
from torch import nn
|
|
|
|
from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
|
|
|
|
|
|
class Adam(GenericAdaptiveOptimizer):
|
|
"""
|
|
## Adam Optimizer
|
|
|
|
We extend the class `GenericAdaptiveOptimizer` defined in [`__init__.py`](index.html)
|
|
to implement the Adam optimizer.
|
|
"""
|
|
|
|
def __init__(self, params,
|
|
lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-16,
|
|
weight_decay: WeightDecay = WeightDecay(),
|
|
optimized_update: bool = True,
|
|
defaults: Optional[Dict[str, Any]] = None):
|
|
"""
|
|
### Initialize the optimizer
|
|
|
|
* `params` is the list of parameters
|
|
* `lr` is the learning rate $\alpha$
|
|
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
|
|
* `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
|
|
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
|
|
* 'optimized_update' is a flag whether to optimize the bias correction of the second moment
|
|
by doing it after adding $\epsilon$
|
|
* `defaults` is a dictionary of default for group values.
|
|
This is useful when you want to extend the class `Adam`.
|
|
"""
|
|
defaults = {} if defaults is None else defaults
|
|
defaults.update(weight_decay.defaults())
|
|
super().__init__(params, defaults, lr, betas, eps)
|
|
|
|
self.weight_decay = weight_decay
|
|
self.optimized_update = optimized_update
|
|
|
|
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
|
|
"""
|
|
### Initialize a parameter state
|
|
|
|
* `state` is the optimizer state of the parameter (tensor)
|
|
* `group` stores optimizer attributes of the parameter group
|
|
* `param` is the parameter tensor $\theta_{t-1}$
|
|
"""
|
|
|
|
# This is the number of optimizer steps taken on the parameter, $t$
|
|
state['step'] = 0
|
|
# Exponential moving average of gradients, $m_t$
|
|
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
# Exponential moving average of squared gradient values, $v_t$
|
|
state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
|
|
|
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
|
|
"""
|
|
### Calculate $m_t$ and and $v_t$
|
|
|
|
* `state` is the optimizer state of the parameter (tensor)
|
|
* `group` stores optimizer attributes of the parameter group
|
|
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
|
|
"""
|
|
|
|
# Get $\beta_1$ and $\beta_2$
|
|
beta1, beta2 = group['betas']
|
|
|
|
# Get $m_{t-1}$ and $v_{t-1}$
|
|
m, v = state['exp_avg'], state['exp_avg_sq']
|
|
|
|
# In-place calculation of $m_t$
|
|
# $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
|
|
m.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
# In-place calculation of $v_t$
|
|
# $$v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \cdot g_t^2$$
|
|
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
|
|
return m, v
|
|
|
|
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
|
|
"""
|
|
### Get learning-rate
|
|
|
|
This returns the modified learning rate based on the state.
|
|
For *Adam* this is just the specified learning rate for the parameter group,
|
|
$\alpha$.
|
|
"""
|
|
return group['lr']
|
|
|
|
def adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
|
|
m: torch.Tensor, v: torch.Tensor):
|
|
"""
|
|
### Do the *Adam* parameter update
|
|
|
|
* `state` is the optimizer state of the parameter (tensor)
|
|
* `group` stores optimizer attributes of the parameter group
|
|
* `param` is the parameter tensor $\theta_{t-1}$
|
|
* `m` and `v` are the uncorrected first and second moments $m_t$ and $v_t$.
|
|
|
|
This computes the following
|
|
|
|
\begin{align}
|
|
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
|
|
\end{align}
|
|
|
|
Since $\alpha$, $\beta_1$, $\beta_2$ and $\epsilon$ are scalars and others are tensors
|
|
we modify this calculation to optimize the computation.
|
|
|
|
\begin{align}
|
|
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \\
|
|
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot
|
|
\frac{m_t / (1-\beta_1^t)}{\sqrt{v_t/(1-\beta_2^t)} + \epsilon} \\
|
|
\theta_t &\leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
|
|
\frac{m_t}{\sqrt{v_t} + \hat{\epsilon}} \\
|
|
\end{align}
|
|
|
|
where
|
|
$$\hat{\epsilon} = (1-\beta_2^t) \epsilon$$
|
|
is what we should specify as the hyper-parameter.
|
|
"""
|
|
|
|
# Get $\beta_1$ and $\beta_2$
|
|
beta1, beta2 = group['betas']
|
|
# Bias correction term for $\hat{m}_t$, $1 - \beta_1^t$
|
|
bias_correction1 = 1 - beta1 ** state['step']
|
|
# Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
|
|
bias_correction2 = 1 - beta2 ** state['step']
|
|
|
|
# Get learning rate
|
|
lr = self.get_lr(state, group)
|
|
|
|
# Whether to optimize the computation
|
|
if self.optimized_update:
|
|
# $\sqrt{v_t} + \hat{\epsilon}$
|
|
denominator = v.sqrt().add_(group['eps'])
|
|
# $\alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
|
|
step_size = lr * math.sqrt(bias_correction2) / bias_correction1
|
|
# $\theta_t \leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
|
|
# \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
|
|
param.data.addcdiv_(m, denominator, value=-step_size)
|
|
# Computation without optimization
|
|
else:
|
|
# $\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$
|
|
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
|
# $\frac{\alpha}{1-\beta_1^t}$
|
|
step_size = lr / bias_correction1
|
|
# $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot
|
|
# \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$
|
|
param.data.addcdiv_(m, denominator, value=-step_size)
|
|
|
|
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
|
|
"""
|
|
### Take an update step for a given parameter tensor
|
|
|
|
* `state` is the optimizer state of the parameter (tensor)
|
|
* `group` stores optimizer attributes of the parameter group
|
|
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
|
|
* `param` is the parameter tensor $\theta_{t-1}$
|
|
"""
|
|
|
|
# Calculate weight decay
|
|
grad = self.weight_decay(param, grad, group)
|
|
|
|
# Get $m_t$ and $v_t$
|
|
m, v = self.get_mv(state, group, grad)
|
|
|
|
# Increment $t$ the number of optimizer steps
|
|
state['step'] += 1
|
|
|
|
# Perform *Adam* update
|
|
self.adam_update(state, group, param, m, v)
|