Files
2022-08-11 15:44:13 +05:30

103 lines
2.6 KiB
Python

"""
---
title: Generate Text with GPT-NeoX
summary: >
Generate Text with GPT-NeoX
---
# Generate Text with GPT-NeoX
This shows how to generate text from GPT-NeoX with a single GPU.
This needs a GPU with more than 45GB memory.
"""
# Imports
from typing import List
import torch
from torch import nn
from labml import monit
from labml_nn.neox.model import LayerGenerator
from labml_nn.neox.utils import get_tokens, print_tokens
from labml_nn.neox.utils.cache import get_cache
# List of layers to load. This is used for testing.
# You can assign a subset of layers like `{0, 1}` so that it only loads
# the first to transformer layers.
LAYERS = None
# Prompt to complete
PROMPT = 'Einstein was born in the German Empire, but moved to Switzerland in 1895, forsaking his German'
def infer(model: nn.Module, ids: List[int], device: torch.device):
"""
### Predict the next token
:param model: is the model
:param ids: are the input token ids
:param device: is the device of the model
"""
with torch.no_grad():
# Get the tokens
x = torch.tensor(ids)[None, :].to(device)
# Eval model
x = model(x)
# Return predicted token
return x[0].max(dim=-1)[1].tolist()
def generate():
"""
## Generate text
"""
# Setup [cache](../utils/cache.html) to cache intermediate key/value pairs for faster generation
cache = get_cache()
cache.set('use_cache', True)
# Device
device = torch.device('cuda:0')
# Load layers
layers = list(LayerGenerator(is_clone_layers=True,
filter_layers=LAYERS,
dtype=torch.float16,
device=device,
).load())
model = nn.Sequential(*layers)
# Get token ids
ids = get_tokens(PROMPT)
# Run the model
cache.set('state_ids', (None, 1))
with monit.section('Infer'):
next_token = infer(model, ids, device)[-1]
# Append the predicted token
ids += [next_token]
# Predict 100 tokens
for i in range(1, 100):
# Set the state to use cached activations
cache.set('state_ids', (i, i + 1))
# Get next token. Note that we only feed the last token to the model because
# we cache the key/value pairs of previous tokens.
with monit.section('Infer'):
next_token = infer(model, [next_token], device)[-1]
# Append the predicted token
ids += [next_token]
# Print
print_tokens(ids, [ids])
#
if __name__ == '__main__':
generate()