mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			323 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import random
 | |
| from pathlib import PurePath, Path
 | |
| from typing import List, Callable, Dict, Optional
 | |
| 
 | |
| from torchvision import datasets, transforms
 | |
| 
 | |
| import torch
 | |
| from labml import lab
 | |
| from labml import monit
 | |
| from labml.configs import BaseConfigs
 | |
| from labml.configs import aggregate, option
 | |
| from labml.utils.download import download_file
 | |
| from torch.utils.data import DataLoader
 | |
| from torch.utils.data import IterableDataset, Dataset
 | |
| 
 | |
| 
 | |
| def _mnist_dataset(is_train, transform):
 | |
|     return datasets.MNIST(str(lab.get_data_path()),
 | |
|                           train=is_train,
 | |
|                           download=True,
 | |
|                           transform=transform)
 | |
| 
 | |
| 
 | |
| class MNISTConfigs(BaseConfigs):
 | |
|     """
 | |
|     Configurable MNIST data set.
 | |
| 
 | |
|     Arguments:
 | |
|         dataset_name (str): name of the data set, ``MNIST``
 | |
|         dataset_transforms (torchvision.transforms.Compose): image transformations
 | |
|         train_dataset (torchvision.datasets.MNIST): training dataset
 | |
|         valid_dataset (torchvision.datasets.MNIST): validation dataset
 | |
| 
 | |
|         train_loader (torch.utils.data.DataLoader): training data loader
 | |
|         valid_loader (torch.utils.data.DataLoader): validation data loader
 | |
| 
 | |
|         train_batch_size (int): training batch size
 | |
|         valid_batch_size (int): validation batch size
 | |
| 
 | |
|         train_loader_shuffle (bool): whether to shuffle training data
 | |
|         valid_loader_shuffle (bool): whether to shuffle validation data
 | |
|     """
 | |
| 
 | |
|     dataset_name: str = 'MNIST'
 | |
|     dataset_transforms: transforms.Compose
 | |
|     train_dataset: datasets.MNIST
 | |
|     valid_dataset: datasets.MNIST
 | |
| 
 | |
|     train_loader: DataLoader
 | |
|     valid_loader: DataLoader
 | |
| 
 | |
|     train_batch_size: int = 64
 | |
|     valid_batch_size: int = 1024
 | |
| 
 | |
|     train_loader_shuffle: bool = True
 | |
|     valid_loader_shuffle: bool = False
 | |
| 
 | |
| 
 | |
| @option(MNISTConfigs.dataset_transforms)
 | |
| def mnist_transforms():
 | |
|     return transforms.Compose([
 | |
|         transforms.ToTensor(),
 | |
|         transforms.Normalize((0.1307,), (0.3081,))
 | |
|     ])
 | |
| 
 | |
| 
 | |
| @option(MNISTConfigs.train_dataset)
 | |
| def mnist_train_dataset(c: MNISTConfigs):
 | |
|     return _mnist_dataset(True, c.dataset_transforms)
 | |
| 
 | |
| 
 | |
| @option(MNISTConfigs.valid_dataset)
 | |
| def mnist_valid_dataset(c: MNISTConfigs):
 | |
|     return _mnist_dataset(False, c.dataset_transforms)
 | |
| 
 | |
| 
 | |
| @option(MNISTConfigs.train_loader)
 | |
| def mnist_train_loader(c: MNISTConfigs):
 | |
|     return DataLoader(c.train_dataset,
 | |
|                       batch_size=c.train_batch_size,
 | |
|                       shuffle=c.train_loader_shuffle)
 | |
| 
 | |
| 
 | |
| @option(MNISTConfigs.valid_loader)
 | |
| def mnist_valid_loader(c: MNISTConfigs):
 | |
|     return DataLoader(c.valid_dataset,
 | |
|                       batch_size=c.valid_batch_size,
 | |
|                       shuffle=c.valid_loader_shuffle)
 | |
| 
 | |
| 
 | |
| aggregate(MNISTConfigs.dataset_name, 'MNIST',
 | |
|           (MNISTConfigs.dataset_transforms, 'mnist_transforms'),
 | |
|           (MNISTConfigs.train_dataset, 'mnist_train_dataset'),
 | |
|           (MNISTConfigs.valid_dataset, 'mnist_valid_dataset'),
 | |
|           (MNISTConfigs.train_loader, 'mnist_train_loader'),
 | |
|           (MNISTConfigs.valid_loader, 'mnist_valid_loader'))
 | |
| 
 | |
| 
 | |
| def _cifar_dataset(is_train, transform):
 | |
|     return datasets.CIFAR10(str(lab.get_data_path()),
 | |
|                             train=is_train,
 | |
|                             download=True,
 | |
|                             transform=transform)
 | |
| 
 | |
| 
 | |
| class CIFAR10Configs(BaseConfigs):
 | |
|     """
 | |
|     Configurable CIFAR 10 data set.
 | |
| 
 | |
|     Arguments:
 | |
|         dataset_name (str): name of the data set, ``CIFAR10``
 | |
|         dataset_transforms (torchvision.transforms.Compose): image transformations
 | |
|         train_dataset (torchvision.datasets.CIFAR10): training dataset
 | |
|         valid_dataset (torchvision.datasets.CIFAR10): validation dataset
 | |
| 
 | |
|         train_loader (torch.utils.data.DataLoader): training data loader
 | |
|         valid_loader (torch.utils.data.DataLoader): validation data loader
 | |
| 
 | |
|         train_batch_size (int): training batch size
 | |
|         valid_batch_size (int): validation batch size
 | |
| 
 | |
|         train_loader_shuffle (bool): whether to shuffle training data
 | |
|         valid_loader_shuffle (bool): whether to shuffle validation data
 | |
|     """
 | |
|     dataset_name: str = 'CIFAR10'
 | |
|     dataset_transforms: transforms.Compose
 | |
|     train_dataset: datasets.CIFAR10
 | |
|     valid_dataset: datasets.CIFAR10
 | |
| 
 | |
|     train_loader: DataLoader
 | |
|     valid_loader: DataLoader
 | |
| 
 | |
|     train_batch_size: int = 64
 | |
|     valid_batch_size: int = 1024
 | |
| 
 | |
|     train_loader_shuffle: bool = True
 | |
|     valid_loader_shuffle: bool = False
 | |
| 
 | |
| 
 | |
| @CIFAR10Configs.calc(CIFAR10Configs.dataset_transforms)
 | |
| def cifar10_transforms():
 | |
|     return transforms.Compose([
 | |
|         transforms.ToTensor(),
 | |
|         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
 | |
|     ])
 | |
| 
 | |
| 
 | |
| @CIFAR10Configs.calc(CIFAR10Configs.train_dataset)
 | |
| def cifar10_train_dataset(c: CIFAR10Configs):
 | |
|     return _cifar_dataset(True, c.dataset_transforms)
 | |
| 
 | |
| 
 | |
| @CIFAR10Configs.calc(CIFAR10Configs.valid_dataset)
 | |
| def cifar10_valid_dataset(c: CIFAR10Configs):
 | |
|     return _cifar_dataset(False, c.dataset_transforms)
 | |
| 
 | |
| 
 | |
| @CIFAR10Configs.calc(CIFAR10Configs.train_loader)
 | |
| def cifar10_train_loader(c: CIFAR10Configs):
 | |
|     return DataLoader(c.train_dataset,
 | |
|                       batch_size=c.train_batch_size,
 | |
|                       shuffle=c.train_loader_shuffle)
 | |
| 
 | |
| 
 | |
| @CIFAR10Configs.calc(CIFAR10Configs.valid_loader)
 | |
| def cifar10_valid_loader(c: CIFAR10Configs):
 | |
|     return DataLoader(c.valid_dataset,
 | |
|                       batch_size=c.valid_batch_size,
 | |
|                       shuffle=c.valid_loader_shuffle)
 | |
| 
 | |
| 
 | |
| CIFAR10Configs.aggregate(CIFAR10Configs.dataset_name, 'CIFAR10',
 | |
|                          (CIFAR10Configs.dataset_transforms, 'cifar10_transforms'),
 | |
|                          (CIFAR10Configs.train_dataset, 'cifar10_train_dataset'),
 | |
|                          (CIFAR10Configs.valid_dataset, 'cifar10_valid_dataset'),
 | |
|                          (CIFAR10Configs.train_loader, 'cifar10_train_loader'),
 | |
|                          (CIFAR10Configs.valid_loader, 'cifar10_valid_loader'))
 | |
| 
 | |
| 
 | |
| class TextDataset:
 | |
|     itos: List[str]
 | |
|     stoi: Dict[str, int]
 | |
|     n_tokens: int
 | |
|     train: str
 | |
|     valid: str
 | |
|     standard_tokens: List[str] = []
 | |
| 
 | |
|     @staticmethod
 | |
|     def load(path: PurePath):
 | |
|         with open(str(path), 'r') as f:
 | |
|             return f.read()
 | |
| 
 | |
|     def __init__(self, path: PurePath, tokenizer: Callable, train: str, valid: str, test: str, *,
 | |
|                  n_tokens: Optional[int] = None,
 | |
|                  stoi: Optional[Dict[str, int]] = None,
 | |
|                  itos: Optional[List[str]] = None):
 | |
|         self.test = test
 | |
|         self.valid = valid
 | |
|         self.train = train
 | |
|         self.tokenizer = tokenizer
 | |
|         self.path = path
 | |
| 
 | |
|         if n_tokens or stoi or itos:
 | |
|             assert stoi and itos and n_tokens
 | |
|             self.n_tokens = n_tokens
 | |
|             self.stoi = stoi
 | |
|             self.itos = itos
 | |
|         else:
 | |
|             self.n_tokens = len(self.standard_tokens)
 | |
|             self.stoi = {t: i for i, t in enumerate(self.standard_tokens)}
 | |
| 
 | |
|             with monit.section("Tokenize"):
 | |
|                 tokens = self.tokenizer(self.train) + self.tokenizer(self.valid)
 | |
|                 tokens = sorted(list(set(tokens)))
 | |
| 
 | |
|             for t in monit.iterate("Build vocabulary", tokens):
 | |
|                 self.stoi[t] = self.n_tokens
 | |
|                 self.n_tokens += 1
 | |
| 
 | |
|             self.itos = [''] * self.n_tokens
 | |
|             for t, n in self.stoi.items():
 | |
|                 self.itos[n] = t
 | |
| 
 | |
|     def text_to_i(self, text: str) -> torch.Tensor:
 | |
|         tokens = self.tokenizer(text)
 | |
|         return torch.tensor([self.stoi[s] for s in tokens if s in self.stoi], dtype=torch.long)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{len(self.train) / 1_000_000 :,.2f}M, {len(self.valid) / 1_000_000 :,.2f}M - {str(self.path)}'
 | |
| 
 | |
| 
 | |
| class SequentialDataLoader(IterableDataset):
 | |
|     def __init__(self, *, text: str, dataset: TextDataset,
 | |
|                  batch_size: int, seq_len: int):
 | |
|         self.seq_len = seq_len
 | |
|         data = dataset.text_to_i(text)
 | |
|         n_batch = data.shape[0] // batch_size
 | |
|         data = data.narrow(0, 0, n_batch * batch_size)
 | |
|         data = data.view(batch_size, -1).t().contiguous()
 | |
|         self.data = data
 | |
| 
 | |
|     def __len__(self):
 | |
|         return self.data.shape[0] // self.seq_len
 | |
| 
 | |
|     def __iter__(self):
 | |
|         self.idx = 0
 | |
|         return self
 | |
| 
 | |
|     def __next__(self):
 | |
|         if self.idx >= self.data.shape[0] - 1:
 | |
|             raise StopIteration()
 | |
| 
 | |
|         seq_len = min(self.seq_len, self.data.shape[0] - 1 - self.idx)
 | |
|         i = self.idx + seq_len
 | |
|         data = self.data[self.idx: i]
 | |
|         target = self.data[self.idx + 1: i + 1]
 | |
|         self.idx = i
 | |
|         return data, target
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         seq_len = min(self.seq_len, self.data.shape[0] - 1 - idx)
 | |
|         i = idx + seq_len
 | |
|         data = self.data[idx: i]
 | |
|         target = self.data[idx + 1: i + 1]
 | |
|         return data, target
 | |
| 
 | |
| 
 | |
| class SequentialUnBatchedDataset(Dataset):
 | |
|     def __init__(self, *, text: str, dataset: TextDataset,
 | |
|                  seq_len: int,
 | |
|                  is_random_offset: bool = True):
 | |
|         self.is_random_offset = is_random_offset
 | |
|         self.seq_len = seq_len
 | |
|         self.data = dataset.text_to_i(text)
 | |
| 
 | |
|     def __len__(self):
 | |
|         return (self.data.shape[0] - 1) // self.seq_len
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         start = idx * self.seq_len
 | |
|         assert start + self.seq_len + 1 <= self.data.shape[0]
 | |
|         if self.is_random_offset:
 | |
|             start += random.randint(0, min(self.seq_len - 1, self.data.shape[0] - (start + self.seq_len + 1)))
 | |
| 
 | |
|         end = start + self.seq_len
 | |
|         data = self.data[start: end]
 | |
|         target = self.data[start + 1: end + 1]
 | |
|         return data, target
 | |
| 
 | |
| 
 | |
| class TextFileDataset(TextDataset):
 | |
|     standard_tokens = []
 | |
| 
 | |
|     def __init__(self, path: PurePath, tokenizer: Callable, *,
 | |
|                  url: Optional[str] = None,
 | |
|                  filter_subset: Optional[int] = None):
 | |
|         path = Path(path)
 | |
|         if not path.exists():
 | |
|             if not url:
 | |
|                 raise FileNotFoundError(str(path))
 | |
|             else:
 | |
|                 download_file(url, path)
 | |
| 
 | |
|         with monit.section("Load data"):
 | |
|             text = self.load(path)
 | |
|             if filter_subset:
 | |
|                 text = text[:filter_subset]
 | |
|             split = int(len(text) * .9)
 | |
|             train = text[:split]
 | |
|             valid = text[split:]
 | |
| 
 | |
|         super().__init__(path, tokenizer, train, valid, '')
 | |
| 
 | |
| 
 | |
| def _test_tiny_shakespeare():
 | |
|     from labml import lab
 | |
|     _ = TextFileDataset(lab.get_data_path() / 'tiny_shakespeare.txt', lambda x: list(x),
 | |
|                         url='https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt')
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     _test_tiny_shakespeare()
 | 
