mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-20 13:10:29 +08:00
260 lines
14 KiB
HTML
260 lines
14 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
|
<meta name="description" content="A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE)."/>
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta name="twitter:title" content="Generalized Advantage Estimation (GAE)"/>
|
|
<meta name="twitter:description" content="A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE)."/>
|
|
<meta name="twitter:site" content="@labmlai"/>
|
|
<meta name="twitter:creator" content="@labmlai"/>
|
|
|
|
<meta property="og:url" content="https://nn.labml.ai/rl/ppo/gae.html"/>
|
|
<meta property="og:title" content="Generalized Advantage Estimation (GAE)"/>
|
|
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta property="og:site_name" content="LabML Neural Networks"/>
|
|
<meta property="og:type" content="object"/>
|
|
<meta property="og:title" content="Generalized Advantage Estimation (GAE)"/>
|
|
<meta property="og:description" content="A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE)."/>
|
|
|
|
<title>Generalized Advantage Estimation (GAE)</title>
|
|
<link rel="stylesheet" href="../../pylit.css">
|
|
<link rel="canonical" href="https://nn.labml.ai/rl/ppo/gae.html"/>
|
|
<!-- Global site tag (gtag.js) - Google Analytics -->
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
|
|
function gtag() {
|
|
dataLayer.push(arguments);
|
|
}
|
|
|
|
gtag('js', new Date());
|
|
|
|
gtag('config', 'G-4V3HC8HBLH');
|
|
</script>
|
|
</head>
|
|
<body>
|
|
<div id='container'>
|
|
<div id="background"></div>
|
|
<div class='section'>
|
|
<div class='docs'>
|
|
<p>
|
|
<a class="parent" href="/">home</a>
|
|
<a class="parent" href="../index.html">rl</a>
|
|
<a class="parent" href="index.html">ppo</a>
|
|
</p>
|
|
<p>
|
|
|
|
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/rl/ppo/gae.py">
|
|
<img alt="Github"
|
|
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
|
rel="nofollow">
|
|
<img alt="Join Slact"
|
|
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://twitter.com/labmlai"
|
|
rel="nofollow">
|
|
<img alt="Twitter"
|
|
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
|
style="max-width:100%;"/></a>
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-0'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-0'>#</a>
|
|
</div>
|
|
<h1>Generalized Advantage Estimation (GAE)</h1>
|
|
<p>This is an implementation of paper <a href="https://arxiv.org/abs/1506.02438">Generalized Advantage Estimation</a>.</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">12</span><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-1'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-1'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">15</span><span class="k">class</span> <span class="nc">GAE</span><span class="p">:</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-2'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-2'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">16</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_workers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">worker_steps</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">gamma</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">lambda_</span><span class="p">:</span> <span class="nb">float</span><span class="p">):</span>
|
|
<span class="lineno">17</span> <span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">=</span> <span class="n">lambda_</span>
|
|
<span class="lineno">18</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">gamma</span>
|
|
<span class="lineno">19</span> <span class="bp">self</span><span class="o">.</span><span class="n">worker_steps</span> <span class="o">=</span> <span class="n">worker_steps</span>
|
|
<span class="lineno">20</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_workers</span> <span class="o">=</span> <span class="n">n_workers</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-3'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-3'>#</a>
|
|
</div>
|
|
<h3>Calculate advantages</h3>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
\hat{A_t^{(1)}} &= r_t + \gamma V(s_{t+1}) - V(s)
|
|
\\
|
|
\hat{A_t^{(2)}} &= r_t + \gamma r_{t+1} +\gamma^2 V(s_{t+2}) - V(s)
|
|
\\
|
|
...
|
|
\\
|
|
\hat{A_t^{(\infty)}} &= r_t + \gamma r_{t+1} +\gamma^2 r_{t+1} + ... - V(s)
|
|
\end{align}</script>
|
|
</p>
|
|
<p>$\hat{A_t^{(1)}}$ is high bias, low variance whilst
|
|
$\hat{A_t^{(\infty)}}$ is unbiased, high variance.</p>
|
|
<p>We take a weighted average of $\hat{A_t^{(k)}}$ to balance bias and variance.
|
|
This is called Generalized Advantage Estimation.
|
|
<script type="math/tex; mode=display">\hat{A_t} = \hat{A_t^{GAE}} = \sum_k w_k \hat{A_t^{(k)}}</script>
|
|
We set $w_k = \lambda^{k-1}$, this gives clean calculation for
|
|
$\hat{A_t}$</p>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
\delta_t &= r_t + \gamma V(s_{t+1}) - V(s_t)$
|
|
\\
|
|
\hat{A_t} &= \delta_t + \gamma \lambda \delta_{t+1} + ... +
|
|
(\gamma \lambda)^{T - t + 1} \delta_{T - 1}$
|
|
\\
|
|
&= \delta_t + \gamma \lambda \hat{A_{t+1}}
|
|
\end{align}</script>
|
|
</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">22</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">done</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">rewards</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">values</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-></span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-4'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-4'>#</a>
|
|
</div>
|
|
<p>advantages table</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">55</span> <span class="n">advantages</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">n_workers</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">worker_steps</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
|
|
<span class="lineno">56</span> <span class="n">last_advantage</span> <span class="o">=</span> <span class="mi">0</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-5'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-5'>#</a>
|
|
</div>
|
|
<p>$V(s_{t+1})$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">59</span> <span class="n">last_value</span> <span class="o">=</span> <span class="n">values</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span>
|
|
<span class="lineno">60</span>
|
|
<span class="lineno">61</span> <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">reversed</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">worker_steps</span><span class="p">)):</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-6'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-6'>#</a>
|
|
</div>
|
|
<p>mask if episode completed after step $t$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">63</span> <span class="n">mask</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="n">done</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span>
|
|
<span class="lineno">64</span> <span class="n">last_value</span> <span class="o">=</span> <span class="n">last_value</span> <span class="o">*</span> <span class="n">mask</span>
|
|
<span class="lineno">65</span> <span class="n">last_advantage</span> <span class="o">=</span> <span class="n">last_advantage</span> <span class="o">*</span> <span class="n">mask</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-7'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-7'>#</a>
|
|
</div>
|
|
<p>$\delta_t$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">67</span> <span class="n">delta</span> <span class="o">=</span> <span class="n">rewards</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="n">last_value</span> <span class="o">-</span> <span class="n">values</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-8'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-8'>#</a>
|
|
</div>
|
|
<p>$\hat{A_t} = \delta_t + \gamma \lambda \hat{A_{t+1}}$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">70</span> <span class="n">last_advantage</span> <span class="o">=</span> <span class="n">delta</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">last_advantage</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-9'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-9'>#</a>
|
|
</div>
|
|
<p>note that we are collecting in reverse order.
|
|
<em>My initial code was appending to a list and
|
|
I forgot to reverse it later.
|
|
It took me around 4 to 5 hours to find the bug.
|
|
The performance of the model was improving
|
|
slightly during initial runs,
|
|
probably because the samples are similar.</em></p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">79</span> <span class="n">advantages</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">last_advantage</span>
|
|
<span class="lineno">80</span>
|
|
<span class="lineno">81</span> <span class="n">last_value</span> <span class="o">=</span> <span class="n">values</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span>
|
|
<span class="lineno">82</span>
|
|
<span class="lineno">83</span> <span class="k">return</span> <span class="n">advantages</span></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
|
</script>
|
|
<!-- MathJax configuration -->
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
tex2jax: {
|
|
inlineMath: [ ['$','$'] ],
|
|
displayMath: [ ['$$','$$'] ],
|
|
processEscapes: true,
|
|
processEnvironments: true
|
|
},
|
|
// Center justify equations in code and markdown cells. Elsewhere
|
|
// we use CSS to left justify single line equations in code cells.
|
|
displayAlign: 'center',
|
|
"HTML-CSS": { fonts: ["TeX"] }
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</script>
|
|
</body>
|
|
</html> |