mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 14:29:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			165 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/bin/python
 | 
						|
 | 
						|
import torch.nn as nn
 | 
						|
import torch.optim as optim
 | 
						|
from torchsummary import summary
 | 
						|
from functools import partial
 | 
						|
from skimage.filters import sobel, sobel_h, roberts
 | 
						|
from models.cnn import CNN
 | 
						|
from utils.dataloader import *
 | 
						|
from utils.train import Trainer
 | 
						|
 | 
						|
# Check if GPU is available
 | 
						|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 | 
						|
print("Device:  " + str(device))
 | 
						|
 | 
						|
# Cifar 10 Datasets location
 | 
						|
save='./data/Cifar10'
 | 
						|
 | 
						|
# Transformations train
 | 
						|
transform_train = transforms.Compose(
 | 
						|
        [transforms.ToTensor(),
 | 
						|
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
 | 
						|
 | 
						|
# Load train dataset and dataloader
 | 
						|
trainset = LoadCifar10DatasetTrain(save, transform_train)
 | 
						|
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
 | 
						|
                                          shuffle=True, num_workers=4)
 | 
						|
 | 
						|
# Transformations test
 | 
						|
transform_test = transforms.Compose(
 | 
						|
        [transforms.ToTensor(),
 | 
						|
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
 | 
						|
 | 
						|
# Load test dataset and dataloader
 | 
						|
testset = LoadCifar10DatasetTest(save, transform_test)
 | 
						|
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
 | 
						|
                                         shuffle=False, num_workers=4)
 | 
						|
 | 
						|
# Create CNN model
 | 
						|
def GetCNN():
 | 
						|
    cnn = CNN( in_features=(32,32,3),
 | 
						|
                out_features=10,
 | 
						|
                conv_filters=[32,32,64,64],
 | 
						|
                conv_kernel_size=[3,3,3,3],
 | 
						|
                conv_strides=[1,1,1,1],
 | 
						|
                conv_pad=[0,0,0,0],
 | 
						|
                max_pool_kernels=[None, (2,2), None, (2,2)],
 | 
						|
                max_pool_strides=[None,2,None,2],
 | 
						|
                use_dropout=False,
 | 
						|
                use_batch_norm=True, #False
 | 
						|
                actv_func=["relu", "relu", "relu", "relu"],
 | 
						|
                device=device
 | 
						|
        )
 | 
						|
 | 
						|
    return cnn
 | 
						|
 | 
						|
model = GetCNN()
 | 
						|
 | 
						|
# Display model specifications
 | 
						|
summary(model, (3,32,32))
 | 
						|
 | 
						|
# Send model to GPU
 | 
						|
model.to(device)
 | 
						|
 | 
						|
# Specify optimizer
 | 
						|
opt = optim.Adam(model.parameters(), lr=0.0005, betas=(0.9, 0.95))
 | 
						|
 | 
						|
# Specify loss function
 | 
						|
cost = nn.CrossEntropyLoss()
 | 
						|
 | 
						|
# Train the model
 | 
						|
trainer = Trainer(device=device, name="Basic_CNN")
 | 
						|
epochs = 5
 | 
						|
trainer.Train(model, trainloader, testloader, cost=cost, opt=opt, epochs=epochs)
 | 
						|
 | 
						|
# Load best saved model for inference
 | 
						|
model_loaded = GetCNN()
 | 
						|
 | 
						|
# Specify location of saved model
 | 
						|
PATH = "./save/Basic_CNN-best-model/model.pt"
 | 
						|
checkpoint = torch.load(PATH)
 | 
						|
 | 
						|
# load the saved model
 | 
						|
model_loaded.load_state_dict(checkpoint['state_dict'])
 | 
						|
 | 
						|
# intialization for hooks and storing activation of ReLU layers
 | 
						|
activation = {}
 | 
						|
hooks = []
 | 
						|
 | 
						|
# Hook function saves activation of a particular layer
 | 
						|
def hook_fn(model, input, output, name):
 | 
						|
    activation[name] = output.cpu().detach().numpy()
 | 
						|
 | 
						|
# Registering hooks
 | 
						|
count =0
 | 
						|
conv_count = 0
 | 
						|
for name, layer in model_loaded.named_modules():
 | 
						|
    if isinstance(layer, nn.ReLU):
 | 
						|
        count +=1
 | 
						|
        hook = layer.register_forward_hook(partial(hook_fn, name=f"{layer._get_name()}-{count}")) #f"{type(layer).__name__}-{name}"
 | 
						|
        hooks.append(hook)
 | 
						|
    if isinstance(layer, nn.Conv2d):
 | 
						|
        conv_count += 1
 | 
						|
 | 
						|
# Displaying image used for inference
 | 
						|
data, _ = trainset[15]
 | 
						|
imshow(data)
 | 
						|
 | 
						|
# Infering model to save activation of ReLU layers
 | 
						|
output = model_loaded(data[None].to(device))
 | 
						|
 | 
						|
# Removing hooks
 | 
						|
for hook in hooks:
 | 
						|
    hook.remove()
 | 
						|
 | 
						|
# Function to display output of a particular ReLU layer
 | 
						|
def output_one_layer(layer_num):
 | 
						|
    assert 1 <= layer_num <= len(activation), "Wrong layer number"
 | 
						|
 | 
						|
    layer_name = f"ReLu-{layer_num}"
 | 
						|
    act = activation[f"ReLU-{layer_num}"]
 | 
						|
    if act.shape[1]==32:
 | 
						|
        rows = 4
 | 
						|
        columns = 8
 | 
						|
    elif act.shape[1]==64:
 | 
						|
        rows = 8
 | 
						|
        columns = 8
 | 
						|
 | 
						|
    fig = plt.figure(figsize=(rows, columns))
 | 
						|
    for idx in range(1, columns * rows + 1):
 | 
						|
        fig.add_subplot(rows, columns, idx)
 | 
						|
        plt.imshow(sobel(act[0][idx-1]), cmap=plt.cm.gray)
 | 
						|
 | 
						|
        # try different filters
 | 
						|
        # plt.imshow(act[0][idx-1], cmap='viridis', vmin=0, vmax=act.max())
 | 
						|
        # plt.imshow(act[0][idx - 1], cmap='hot')
 | 
						|
        # plt.imshow(roberts(act[0][idx - 1]), cmap=plt.cm.gray)
 | 
						|
        # plt.imshow(sobel_h(act[0][idx-1]), cmap=plt.cm.gray)
 | 
						|
 | 
						|
        plt.axis('off')
 | 
						|
 | 
						|
    plt.tight_layout()
 | 
						|
    plt.show()
 | 
						|
 | 
						|
# Function to display output of all ReLU layer after Convulution layers
 | 
						|
def output_all_layers():
 | 
						|
    for [name, output], count in zip(activation.items(), range(conv_count)):
 | 
						|
        if output.shape[1] == 32:
 | 
						|
            _, axs = plt.subplots(8, 4, figsize=(8, 4))
 | 
						|
        elif output.shape[1] == 64:
 | 
						|
            _, axs = plt.subplots(8, 8, figsize=(8, 8))
 | 
						|
 | 
						|
        for ax, out in zip(np.ravel(axs), output[0]):
 | 
						|
            ax.imshow(sobel(out), cmap=plt.cm.gray)
 | 
						|
            ax.axis('off')
 | 
						|
 | 
						|
        plt.suptitle(name)
 | 
						|
        plt.tight_layout()
 | 
						|
        plt.show()
 | 
						|
 | 
						|
# Choose either one to display
 | 
						|
output_one_layer(layer_num=3) # choose layer number
 | 
						|
output_all_layers()
 | 
						|
 |