mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			759 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			759 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content="A PyTorch implementation/tutorial of HyperLSTM introduced in paper HyperNetworks."/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="HyperNetworks - HyperLSTM"/>
 | |
|     <meta name="twitter:description" content="A PyTorch implementation/tutorial of HyperLSTM introduced in paper HyperNetworks."/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/hypernetworks/hyper_lstm.html"/>
 | |
|     <meta property="og:title" content="HyperNetworks - HyperLSTM"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="HyperNetworks - HyperLSTM"/>
 | |
|     <meta property="og:description" content="A PyTorch implementation/tutorial of HyperLSTM introduced in paper HyperNetworks."/>
 | |
| 
 | |
|     <title>HyperNetworks - HyperLSTM</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/hypernetworks/hyper_lstm.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="index.html">hypernetworks</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/hypernetworks/hyper_lstm.py">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1>HyperNetworks - HyperLSTM</h1>
 | |
| <p>We have implemented HyperLSTM introduced in paper
 | |
| <a href="https://arxiv.org/abs/1609.09106">HyperNetworks</a>, with annotations
 | |
| using <a href="https://pytorch.org">PyTorch</a>.
 | |
| <a href="https://blog.otoro.net/2016/09/28/hyper-networks/">This blog post</a>
 | |
| by David Ha gives a good explanation of HyperNetworks.</p>
 | |
| <p>We have an experiment that trains a HyperLSTM to predict text on Shakespeare dataset.
 | |
| Here’s the link to code: <a href="experiment.html"><code>experiment.py</code></a></p>
 | |
| <p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/hypernetworks/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
 | |
| <a href="https://web.lab-ml.com/run?uuid=9e7f39e047e811ebbaff2b26e3148b3d"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
 | |
| <p>HyperNetworks use a smaller network to generate weights of a larger network.
 | |
| There are two variants: static hyper-networks and dynamic hyper-networks.
 | |
| Static HyperNetworks have smaller networks that generate weights (kernels)
 | |
| of a convolutional network. Dynamic HyperNetworks generate parameters of a
 | |
| recurrent neural network
 | |
| for each step. This is an implementation of the latter.</p>
 | |
| <h2>Dynamic HyperNetworks</h2>
 | |
| <p>In a RNN the parameters stay constant for each step.
 | |
| Dynamic HyperNetworks generate different parameters for each step.
 | |
| HyperLSTM has the structure of a LSTM but the parameters of
 | |
| each step are changed by a smaller LSTM network.</p>
 | |
| <p>In the basic form, a Dynamic HyperNetwork has a smaller recurrent network that generates
 | |
| a feature vector corresponding to each parameter tensor of the larger recurrent network.
 | |
| Let’s say the larger network has some parameter $\color{cyan}{W_h}$ the smaller network generates a feature
 | |
| vector $z_h$ and we dynamically compute $\color{cyan}{W_h}$ as a linear transformation of $z_h$.
 | |
| For instance $\color{cyan}{W_h} =  \langle W_{hz}, z_h \rangle$ where
 | |
| $W_{hz}$ is a 3-d tensor parameter and $\langle . \rangle$ is a tensor-vector multiplication.
 | |
| $z_h$ is usually a linear transformation of the output of the smaller recurrent network.</p>
 | |
| <h3>Weight scaling instead of computing</h3>
 | |
| <p>Large recurrent networks have large dynamically computed parameters.
 | |
| These are calculated using linear transformation of feature vector $z$.
 | |
| And this transformation requires an even larger weight tensor.
 | |
| That is, when $\color{cyan}{W_h}$ has shape $N_h \times N_h$,
 | |
| $W_{hz}$ will be $N_h \times N_h \times N_z$.</p>
 | |
| <p>To overcome this, we compute the weight parameters of the recurrent network by
 | |
| dynamically scaling each row of a matrix of same size.
 | |
| <script type="math/tex; mode=display">\begin{align}
 | |
| d(z) = W_{hz} z_h \\
 | |
| \\
 | |
| \color{cyan}{W_h} =
 | |
| \begin{pmatrix}
 | |
| d_0(z) W_{hd_0} \\
 | |
| d_1(z) W_{hd_1} \\
 | |
| ... \\
 | |
| d_{N_h}(z) W_{hd_{N_h}} \\
 | |
| \end{pmatrix}
 | |
| \end{align}</script>
 | |
| where $W_{hd}$ is a $N_h \times N_h$ parameter matrix.</p>
 | |
| <p>We can further optimize this when we compute $\color{cyan}{W_h} h$,
 | |
| as
 | |
| <script type="math/tex; mode=display">\color{lightgreen}{d(z) \odot (W_{hd} h)}</script>
 | |
| where $\odot$ stands for element-wise multiplication.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">71</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Tuple</span>
 | |
| <span class="lineno">72</span>
 | |
| <span class="lineno">73</span><span class="kn">import</span> <span class="nn">torch</span>
 | |
| <span class="lineno">74</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
 | |
| <span class="lineno">75</span>
 | |
| <span class="lineno">76</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
 | |
| <span class="lineno">77</span><span class="kn">from</span> <span class="nn">labml_nn.lstm</span> <span class="kn">import</span> <span class="n">LSTMCell</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-1'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-1'>#</a>
 | |
|                 </div>
 | |
|                 <h2>HyperLSTM Cell</h2>
 | |
| <p>For HyperLSTM the smaller network and the larger network both have the LSTM structure.
 | |
| This is defined in Appendix A.2.2 in the paper.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">80</span><span class="k">class</span> <span class="nc">HyperLSTMCell</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-2'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-2'>#</a>
 | |
|                 </div>
 | |
|                 <p><code>input_size</code> is the size of the input $x_t$,
 | |
| <code>hidden_size</code> is the size of the LSTM, and
 | |
| <code>hyper_size</code> is the size of the smaller LSTM that alters the weights of the larger outer LSTM.
 | |
| <code>n_z</code> is the size of the feature vectors used to alter the LSTM weights.</p>
 | |
| <p>We use the output of the smaller LSTM to compute $z_h^{i,f,g,o}$, $z_x^{i,f,g,o}$ and
 | |
| $z_b^{i,f,g,o}$ using linear transformations.
 | |
| We calculate $d_h^{i,f,g,o}(z_h^{i,f,g,o})$, $d_x^{i,f,g,o}(z_x^{i,f,g,o})$, and
 | |
| $d_b^{i,f,g,o}(z_b^{i,f,g,o})$ from these, using linear transformations again.
 | |
| These are then used to scale the rows of weight and bias tensors of the main LSTM.</p>
 | |
| <p>📝 Since the computation of $z$ and $d$ are two sequential linear transformations
 | |
| these can be combined into a single linear transformation.
 | |
| However we’ve implemented this separately so that it matches with the description
 | |
| in the paper.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">88</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">hyper_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_z</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-3'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-3'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">106</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-4'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-4'>#</a>
 | |
|                 </div>
 | |
|                 <p>The input to the hyperLSTM is
 | |
| <script type="math/tex; mode=display">
 | |
| \hat{x}_t = \begin{pmatrix}
 | |
| h_{t-1} \\
 | |
| x_t
 | |
| \end{pmatrix}
 | |
| </script>
 | |
| where $x_t$ is the input and $h_{t-1}$ is the output of the outer LSTM at previous step.
 | |
| So the input size is <code>hidden_size + input_size</code>.</p>
 | |
| <p>The output of hyperLSTM is $\hat{h}_t$ and $\hat{c}_t$.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">119</span>        <span class="bp">self</span><span class="o">.</span><span class="n">hyper</span> <span class="o">=</span> <span class="n">LSTMCell</span><span class="p">(</span><span class="n">hidden_size</span> <span class="o">+</span> <span class="n">input_size</span><span class="p">,</span> <span class="n">hyper_size</span><span class="p">,</span> <span class="n">layer_norm</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-5'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-5'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">z_h^{i,f,g,o} = lin_{h}^{i,f,g,o}(\hat{h}_t)</script>
 | |
| 🤔 In the paper it was specified as
 | |
| <script type="math/tex; mode=display">z_h^{i,f,g,o} = lin_{h}^{i,f,g,o}(\hat{h}_{\color{red}{t-1}})</script>
 | |
| I feel that it’s a typo.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">125</span>        <span class="bp">self</span><span class="o">.</span><span class="n">z_h</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">hyper_size</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="n">n_z</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-6'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-6'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">z_x^{i,f,g,o} = lin_x^{i,f,g,o}(\hat{h}_t)</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">127</span>        <span class="bp">self</span><span class="o">.</span><span class="n">z_x</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">hyper_size</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="n">n_z</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-7'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-7'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">z_b^{i,f,g,o} = lin_b^{i,f,g,o}(\hat{h}_t)</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">129</span>        <span class="bp">self</span><span class="o">.</span><span class="n">z_b</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">hyper_size</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="n">n_z</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-8'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-8'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">d_h^{i,f,g,o}(z_h^{i,f,g,o}) = lin_{dh}^{i,f,g,o}(z_h^{i,f,g,o})</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">132</span>        <span class="n">d_h</span> <span class="o">=</span> <span class="p">[</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_z</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)]</span>
 | |
| <span class="lineno">133</span>        <span class="bp">self</span><span class="o">.</span><span class="n">d_h</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="n">d_h</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-9'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-9'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">d_x^{i,f,g,o}(z_x^{i,f,g,o}) = lin_{dx}^{i,f,g,o}(z_x^{i,f,g,o})</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">135</span>        <span class="n">d_x</span> <span class="o">=</span> <span class="p">[</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_z</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)]</span>
 | |
| <span class="lineno">136</span>        <span class="bp">self</span><span class="o">.</span><span class="n">d_x</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="n">d_x</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-10'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-10'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">d_b^{i,f,g,o}(z_b^{i,f,g,o}) = lin_{db}^{i,f,g,o}(z_b^{i,f,g,o})</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">138</span>        <span class="n">d_b</span> <span class="o">=</span> <span class="p">[</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_z</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)]</span>
 | |
| <span class="lineno">139</span>        <span class="bp">self</span><span class="o">.</span><span class="n">d_b</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="n">d_b</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-11'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-11'>#</a>
 | |
|                 </div>
 | |
|                 <p>The weight matrices $W_h^{i,f,g,o}$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">142</span>        <span class="bp">self</span><span class="o">.</span><span class="n">w_h</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ParameterList</span><span class="p">([</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">))</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-12'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-12'>#</a>
 | |
|                 </div>
 | |
|                 <p>The weight matrices $W_x^{i,f,g,o}$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">144</span>        <span class="bp">self</span><span class="o">.</span><span class="n">w_x</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ParameterList</span><span class="p">([</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">input_size</span><span class="p">))</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-13'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-13'>#</a>
 | |
|                 </div>
 | |
|                 <p>Layer normalization</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">147</span>        <span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">([</span><span class="n">nn</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)])</span>
 | |
| <span class="lineno">148</span>        <span class="bp">self</span><span class="o">.</span><span class="n">layer_norm_c</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-14'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-14'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">150</span>    <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
 | |
| <span class="lineno">151</span>                 <span class="n">h</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
 | |
| <span class="lineno">152</span>                 <span class="n">h_hat</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">c_hat</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-15'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-15'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">
 | |
| \hat{x}_t = \begin{pmatrix}
 | |
| h_{t-1} \\
 | |
| x_t
 | |
| \end{pmatrix}
 | |
| </script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">159</span>        <span class="n">x_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">h</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-16'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-16'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">\hat{h}_t, \hat{c}_t = lstm(\hat{x}_t, \hat{h}_{t-1}, \hat{c}_{t-1})</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">161</span>        <span class="n">h_hat</span><span class="p">,</span> <span class="n">c_hat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">hyper</span><span class="p">(</span><span class="n">x_hat</span><span class="p">,</span> <span class="n">h_hat</span><span class="p">,</span> <span class="n">c_hat</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-17'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-17'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">z_h^{i,f,g,o} = lin_{h}^{i,f,g,o}(\hat{h}_t)</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">164</span>        <span class="n">z_h</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">z_h</span><span class="p">(</span><span class="n">h_hat</span><span class="p">)</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-18'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-18'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">z_x^{i,f,g,o} = lin_x^{i,f,g,o}(\hat{h}_t)</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">166</span>        <span class="n">z_x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">z_x</span><span class="p">(</span><span class="n">h_hat</span><span class="p">)</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-19'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-19'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">z_b^{i,f,g,o} = lin_b^{i,f,g,o}(\hat{h}_t)</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">168</span>        <span class="n">z_b</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">z_b</span><span class="p">(</span><span class="n">h_hat</span><span class="p">)</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-20'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-20'>#</a>
 | |
|                 </div>
 | |
|                 <p>We calculate $i$, $f$, $g$ and $o$ in a loop</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">171</span>        <span class="n">ifgo</span> <span class="o">=</span> <span class="p">[]</span>
 | |
| <span class="lineno">172</span>        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-21'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-21'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">d_h^{i,f,g,o}(z_h^{i,f,g,o}) = lin_{dh}^{i,f,g,o}(z_h^{i,f,g,o})</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">174</span>            <span class="n">d_h</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_h</span><span class="p">[</span><span class="n">i</span><span class="p">](</span><span class="n">z_h</span><span class="p">[</span><span class="n">i</span><span class="p">])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-22'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-22'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">d_x^{i,f,g,o}(z_x^{i,f,g,o}) = lin_{dx}^{i,f,g,o}(z_x^{i,f,g,o})</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">176</span>            <span class="n">d_x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_x</span><span class="p">[</span><span class="n">i</span><span class="p">](</span><span class="n">z_x</span><span class="p">[</span><span class="n">i</span><span class="p">])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-23'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-23'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">\begin{align}
 | |
| {i,f,g,o} = LN(&\color{lightgreen}{d_h^{i,f,g,o}(z_h) \odot (W_h^{i,f,g,o} h_{t-1})} \\
 | |
|              + &\color{lightgreen}{d_x^{i,f,g,o}(z_x) \odot (W_h^{i,f,g,o} x_t)} \\
 | |
|              + &d_b^{i,f,g,o}(z_b))
 | |
| \end{align}</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">183</span>            <span class="n">y</span> <span class="o">=</span> <span class="n">d_h</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'ij,bj->bi'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">w_h</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">h</span><span class="p">)</span> <span class="o">+</span> \
 | |
| <span class="lineno">184</span>                <span class="n">d_x</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'ij,bj->bi'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">w_x</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span> <span class="o">+</span> \
 | |
| <span class="lineno">185</span>                <span class="bp">self</span><span class="o">.</span><span class="n">d_b</span><span class="p">[</span><span class="n">i</span><span class="p">](</span><span class="n">z_b</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
 | |
| <span class="lineno">186</span>
 | |
| <span class="lineno">187</span>            <span class="n">ifgo</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">[</span><span class="n">i</span><span class="p">](</span><span class="n">y</span><span class="p">))</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-24'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-24'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">i_t, f_t, g_t, o_t</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">190</span>        <span class="n">i</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="n">g</span><span class="p">,</span> <span class="n">o</span> <span class="o">=</span> <span class="n">ifgo</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-25'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-25'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">c_t = \sigma(f_t) \odot c_{t-1} + \sigma(i_t) \odot \tanh(g_t) </script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">193</span>        <span class="n">c_next</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="o">*</span> <span class="n">c</span> <span class="o">+</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">tanh</span><span class="p">(</span><span class="n">g</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-26'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-26'>#</a>
 | |
|                 </div>
 | |
|                 <p>
 | |
| <script type="math/tex; mode=display">h_t = \sigma(o_t) \odot \tanh(LN(c_t))</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">196</span>        <span class="n">h_next</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">o</span><span class="p">)</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">tanh</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">layer_norm_c</span><span class="p">(</span><span class="n">c_next</span><span class="p">))</span>
 | |
| <span class="lineno">197</span>
 | |
| <span class="lineno">198</span>        <span class="k">return</span> <span class="n">h_next</span><span class="p">,</span> <span class="n">c_next</span><span class="p">,</span> <span class="n">h_hat</span><span class="p">,</span> <span class="n">c_hat</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-27'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-27'>#</a>
 | |
|                 </div>
 | |
|                 <h1>HyperLSTM module</h1>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">201</span><span class="k">class</span> <span class="nc">HyperLSTM</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-28'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-28'>#</a>
 | |
|                 </div>
 | |
|                 <p>Create a network of <code>n_layers</code> of HyperLSTM.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">205</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">hyper_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_z</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-29'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-29'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">210</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-30'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-30'>#</a>
 | |
|                 </div>
 | |
|                 <p>Store sizes to initialize state</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">213</span>        <span class="bp">self</span><span class="o">.</span><span class="n">n_layers</span> <span class="o">=</span> <span class="n">n_layers</span>
 | |
| <span class="lineno">214</span>        <span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
 | |
| <span class="lineno">215</span>        <span class="bp">self</span><span class="o">.</span><span class="n">hyper_size</span> <span class="o">=</span> <span class="n">hyper_size</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-31'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-31'>#</a>
 | |
|                 </div>
 | |
|                 <p>Create cells for each layer. Note that only the first layer gets the input directly.
 | |
| Rest of the layers get the input from the layer below</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">219</span>        <span class="bp">self</span><span class="o">.</span><span class="n">cells</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">([</span><span class="n">HyperLSTMCell</span><span class="p">(</span><span class="n">input_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">hyper_size</span><span class="p">,</span> <span class="n">n_z</span><span class="p">)]</span> <span class="o">+</span>
 | |
| <span class="lineno">220</span>                                   <span class="p">[</span><span class="n">HyperLSTMCell</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">hyper_size</span><span class="p">,</span> <span class="n">n_z</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span>
 | |
| <span class="lineno">221</span>                                    <span class="nb">range</span><span class="p">(</span><span class="n">n_layers</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-32'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-32'>#</a>
 | |
|                 </div>
 | |
|                 <ul>
 | |
| <li><code>x</code> has shape <code>[n_steps, batch_size, input_size]</code> and</li>
 | |
| <li><code>state</code> is a tuple of $h, c, \hat{h}, \hat{c}$.
 | |
|  $h, c$ have shape <code>[batch_size, hidden_size]</code> and
 | |
|  $\hat{h}, \hat{c}$ have shape <code>[batch_size, hyper_size]</code>.</li>
 | |
| </ul>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">223</span>    <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
 | |
| <span class="lineno">224</span>                 <span class="n">state</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-33'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-33'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">231</span>        <span class="n">n_steps</span><span class="p">,</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[:</span><span class="mi">2</span><span class="p">]</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-34'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-34'>#</a>
 | |
|                 </div>
 | |
|                 <p>Initialize the state with zeros if <code>None</code></p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">234</span>        <span class="k">if</span> <span class="n">state</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
 | |
| <span class="lineno">235</span>            <span class="n">h</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">new_zeros</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_layers</span><span class="p">)]</span>
 | |
| <span class="lineno">236</span>            <span class="n">c</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">new_zeros</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_layers</span><span class="p">)]</span>
 | |
| <span class="lineno">237</span>            <span class="n">h_hat</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">new_zeros</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">hyper_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_layers</span><span class="p">)]</span>
 | |
| <span class="lineno">238</span>            <span class="n">c_hat</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">new_zeros</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">hyper_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_layers</span><span class="p">)]</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-35'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-35'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">240</span>        <span class="k">else</span><span class="p">:</span>
 | |
| <span class="lineno">241</span>            <span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="n">h_hat</span><span class="p">,</span> <span class="n">c_hat</span><span class="p">)</span> <span class="o">=</span> <span class="n">state</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-36'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-36'>#</a>
 | |
|                 </div>
 | |
|                 <p>Reverse stack the tensors to get the states of each layer</p>
 | |
| <p>📝 You can just work with the tensor itself but this is easier to debug</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">245</span>            <span class="n">h</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">unbind</span><span class="p">(</span><span class="n">h</span><span class="p">)),</span> <span class="nb">list</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">unbind</span><span class="p">(</span><span class="n">c</span><span class="p">))</span>
 | |
| <span class="lineno">246</span>            <span class="n">h_hat</span><span class="p">,</span> <span class="n">c_hat</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">unbind</span><span class="p">(</span><span class="n">h_hat</span><span class="p">)),</span> <span class="nb">list</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">unbind</span><span class="p">(</span><span class="n">c_hat</span><span class="p">))</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-37'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-37'>#</a>
 | |
|                 </div>
 | |
|                 <p>Collect the outputs of the final layer at each step</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">249</span>        <span class="n">out</span> <span class="o">=</span> <span class="p">[]</span>
 | |
| <span class="lineno">250</span>        <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_steps</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-38'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-38'>#</a>
 | |
|                 </div>
 | |
|                 <p>Input to the first layer is the input itself</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">252</span>            <span class="n">inp</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="n">t</span><span class="p">]</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-39'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-39'>#</a>
 | |
|                 </div>
 | |
|                 <p>Loop through the layers</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">254</span>            <span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_layers</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-40'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-40'>#</a>
 | |
|                 </div>
 | |
|                 <p>Get the state of the layer</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">256</span>                <span class="n">h</span><span class="p">[</span><span class="n">layer</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="n">layer</span><span class="p">],</span> <span class="n">h_hat</span><span class="p">[</span><span class="n">layer</span><span class="p">],</span> <span class="n">c_hat</span><span class="p">[</span><span class="n">layer</span><span class="p">]</span> <span class="o">=</span> \
 | |
| <span class="lineno">257</span>                    <span class="bp">self</span><span class="o">.</span><span class="n">cells</span><span class="p">[</span><span class="n">layer</span><span class="p">](</span><span class="n">inp</span><span class="p">,</span> <span class="n">h</span><span class="p">[</span><span class="n">layer</span><span class="p">],</span> <span class="n">c</span><span class="p">[</span><span class="n">layer</span><span class="p">],</span> <span class="n">h_hat</span><span class="p">[</span><span class="n">layer</span><span class="p">],</span> <span class="n">c_hat</span><span class="p">[</span><span class="n">layer</span><span class="p">])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-41'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-41'>#</a>
 | |
|                 </div>
 | |
|                 <p>Input to the next layer is the state of this layer</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">259</span>                <span class="n">inp</span> <span class="o">=</span> <span class="n">h</span><span class="p">[</span><span class="n">layer</span><span class="p">]</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-42'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-42'>#</a>
 | |
|                 </div>
 | |
|                 <p>Collect the output $h$ of the final layer</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">261</span>            <span class="n">out</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">h</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-43'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-43'>#</a>
 | |
|                 </div>
 | |
|                 <p>Stack the outputs and states</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">264</span>        <span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
 | |
| <span class="lineno">265</span>        <span class="n">h</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
 | |
| <span class="lineno">266</span>        <span class="n">c</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
 | |
| <span class="lineno">267</span>        <span class="n">h_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">h_hat</span><span class="p">)</span>
 | |
| <span class="lineno">268</span>        <span class="n">c_hat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">c_hat</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-44'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-44'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">271</span>        <span class="k">return</span> <span class="n">out</span><span class="p">,</span> <span class="p">(</span><span class="n">h</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="n">h_hat</span><span class="p">,</span> <span class="n">c_hat</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
