mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-01 03:43:09 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			387 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			387 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content="A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN)."/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="Deep Convolutional Generative Adversarial Networks (DCGAN)"/>
 | |
|     <meta name="twitter:description" content="A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN)."/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/gan/dcgan.html"/>
 | |
|     <meta property="og:title" content="Deep Convolutional Generative Adversarial Networks (DCGAN)"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="Deep Convolutional Generative Adversarial Networks (DCGAN)"/>
 | |
|     <meta property="og:description" content="A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN)."/>
 | |
| 
 | |
|     <title>Deep Convolutional Generative Adversarial Networks (DCGAN)</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/gan/dcgan.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="index.html">gan</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/gan/dcgan.py">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1>Deep Convolutional Generative Adversarial Networks (DCGAN)</h1>
 | |
| <p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of paper
 | |
| <a href="https://arxiv.org/abs/1511.06434">Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks</a>.</p>
 | |
| <p>This implementation is based on the <a href="https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html">PyTorch DCGAN Tutorial</a>.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">15</span><span></span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
 | |
| <span class="lineno">16</span>
 | |
| <span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
 | |
| <span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">calculate</span>
 | |
| <span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
 | |
| <span class="lineno">20</span><span class="kn">from</span> <span class="nn">labml_nn.gan.simple_mnist_experiment</span> <span class="kn">import</span> <span class="n">Configs</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-1'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-1'>#</a>
 | |
|                 </div>
 | |
|                 <h3>Convolutional Generator Network</h3>
 | |
| <p>This is similar to the de-convolutional network used for CelebA faces,
 | |
| but modified for MNIST images.</p>
 | |
| <p><img src="https://pytorch.org/tutorials/_images/dcgan_generator.png" style="max-width:90%" /></p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">23</span><span class="k">class</span> <span class="nc">Generator</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-2'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-2'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">33</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
 | |
| <span class="lineno">34</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-3'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-3'>#</a>
 | |
|                 </div>
 | |
|                 <p>The input is $1 \times 1$ with 100 channels</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">36</span>        <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-4'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-4'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $3 \times 3$ output</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">38</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">39</span>            <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">),</span>
 | |
| <span class="lineno">40</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-5'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-5'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $7 \times 7$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">42</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">43</span>            <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">512</span><span class="p">),</span>
 | |
| <span class="lineno">44</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-6'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-6'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $14 \times 14$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">46</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">47</span>            <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">256</span><span class="p">),</span>
 | |
| <span class="lineno">48</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-7'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-7'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $28 \times 28$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">50</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">51</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Tanh</span><span class="p">()</span>
 | |
| <span class="lineno">52</span>        <span class="p">)</span>
 | |
| <span class="lineno">53</span>
 | |
| <span class="lineno">54</span>        <span class="bp">self</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_weights_init</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-8'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-8'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">56</span>    <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-9'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-9'>#</a>
 | |
|                 </div>
 | |
|                 <p>Change from shape <code>[batch_size, 100]</code> to <code>[batch_size, 100, 1, 1]</code></p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">58</span>        <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
 | |
| <span class="lineno">59</span>        <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
 | |
| <span class="lineno">60</span>        <span class="k">return</span> <span class="n">x</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-10'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-10'>#</a>
 | |
|                 </div>
 | |
|                 <h3>Convolutional Discriminator Network</h3>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">63</span><span class="k">class</span> <span class="nc">Discriminator</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-11'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-11'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">68</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
 | |
| <span class="lineno">69</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-12'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-12'>#</a>
 | |
|                 </div>
 | |
|                 <p>The input is $28 \times 28$ with one channel</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">71</span>        <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-13'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-13'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $14 \times 14$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">73</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">74</span>            <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-14'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-14'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $7 \times 7$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">76</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">77</span>            <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">512</span><span class="p">),</span>
 | |
| <span class="lineno">78</span>            <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-15'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-15'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $3 \times 3$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">80</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">81</span>            <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">),</span>
 | |
| <span class="lineno">82</span>            <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-16'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-16'>#</a>
 | |
|                 </div>
 | |
|                 <p>This gives $1 \times 1$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">84</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
 | |
| <span class="lineno">85</span>        <span class="p">)</span>
 | |
| <span class="lineno">86</span>        <span class="bp">self</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_weights_init</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-17'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-17'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">88</span>    <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
 | |
| <span class="lineno">89</span>        <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
 | |
| <span class="lineno">90</span>        <span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-18'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-18'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">93</span><span class="k">def</span> <span class="nf">_weights_init</span><span class="p">(</span><span class="n">m</span><span class="p">):</span>
 | |
| <span class="lineno">94</span>    <span class="n">classname</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
 | |
| <span class="lineno">95</span>    <span class="k">if</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">'Conv'</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
 | |
| <span class="lineno">96</span>        <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">)</span>
 | |
| <span class="lineno">97</span>    <span class="k">elif</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">'BatchNorm'</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
 | |
| <span class="lineno">98</span>        <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">)</span>
 | |
| <span class="lineno">99</span>        <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">constant_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-19'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-19'>#</a>
 | |
|                 </div>
 | |
|                 <p>We import the [simple gan experiment]((simple_mnist_experiment.html) and change the
 | |
| generator and discriminator networks</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">104</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">generator</span><span class="p">,</span> <span class="s1">'cnn'</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">Generator</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span>
 | |
| <span class="lineno">105</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">discriminator</span><span class="p">,</span> <span class="s1">'cnn'</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">Discriminator</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-20'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-20'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">108</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
 | |
| <span class="lineno">109</span>    <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span>
 | |
| <span class="lineno">110</span>    <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">'mnist_dcgan'</span><span class="p">,</span> <span class="n">comment</span><span class="o">=</span><span class="s1">'test'</span><span class="p">)</span>
 | |
| <span class="lineno">111</span>    <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span>
 | |
| <span class="lineno">112</span>                       <span class="p">{</span><span class="s1">'discriminator'</span><span class="p">:</span> <span class="s1">'cnn'</span><span class="p">,</span>
 | |
| <span class="lineno">113</span>                        <span class="s1">'generator'</span><span class="p">:</span> <span class="s1">'cnn'</span><span class="p">,</span>
 | |
| <span class="lineno">114</span>                        <span class="s1">'label_smoothing'</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">})</span>
 | |
| <span class="lineno">115</span>    <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
 | |
| <span class="lineno">116</span>        <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
 | |
| <span class="lineno">117</span>
 | |
| <span class="lineno">118</span>
 | |
| <span class="lineno">119</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
 | |
| <span class="lineno">120</span>    <span class="n">main</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
