mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 14:29:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
---
 | 
						|
title: Train a ResNet on CIFAR 10
 | 
						|
summary: >
 | 
						|
  Train a ResNet on CIFAR 10
 | 
						|
---
 | 
						|
 | 
						|
# Train a [ResNet](index.html) on CIFAR 10
 | 
						|
 | 
						|
[](https://app.labml.ai/run/fc5ad600e4af11ebbafd23b8665193c1)
 | 
						|
"""
 | 
						|
from typing import List, Optional
 | 
						|
 | 
						|
from torch import nn
 | 
						|
 | 
						|
from labml import experiment
 | 
						|
from labml.configs import option
 | 
						|
from labml_nn.experiments.cifar10 import CIFAR10Configs
 | 
						|
from labml_nn.resnet import ResNetBase
 | 
						|
 | 
						|
 | 
						|
class Configs(CIFAR10Configs):
 | 
						|
    """
 | 
						|
    ## Configurations
 | 
						|
 | 
						|
    We use [`CIFAR10Configs`](../experiments/cifar10.html) which defines all the
 | 
						|
    dataset related configurations, optimizer, and a training loop.
 | 
						|
    """
 | 
						|
 | 
						|
    # Number fo blocks for each feature map size
 | 
						|
    n_blocks: List[int] = [3, 3, 3]
 | 
						|
    # Number of channels for each feature map size
 | 
						|
    n_channels: List[int] = [16, 32, 64]
 | 
						|
    # Bottleneck sizes
 | 
						|
    bottlenecks: Optional[List[int]] = None
 | 
						|
    # Kernel size of the initial convolution layer
 | 
						|
    first_kernel_size: int = 7
 | 
						|
 | 
						|
 | 
						|
@option(Configs.model)
 | 
						|
def _resnet(c: Configs):
 | 
						|
    """
 | 
						|
    ### Create model
 | 
						|
    """
 | 
						|
    # [ResNet](index.html)
 | 
						|
    base = ResNetBase(c.n_blocks, c.n_channels, c.bottlenecks, img_channels=3, first_kernel_size=c.first_kernel_size)
 | 
						|
    # Linear layer for classification
 | 
						|
    classification = nn.Linear(c.n_channels[-1], 10)
 | 
						|
 | 
						|
    # Stack them
 | 
						|
    model = nn.Sequential(base, classification)
 | 
						|
    # Move the model to the device
 | 
						|
    return model.to(c.device)
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    # Create experiment
 | 
						|
    experiment.create(name='resnet', comment='cifar10')
 | 
						|
    # Create configurations
 | 
						|
    conf = Configs()
 | 
						|
    # Load configurations
 | 
						|
    experiment.configs(conf, {
 | 
						|
        'bottlenecks': [8, 16, 16],
 | 
						|
        'n_blocks': [6, 6, 6],
 | 
						|
 | 
						|
        'optimizer.optimizer': 'Adam',
 | 
						|
        'optimizer.learning_rate': 2.5e-4,
 | 
						|
 | 
						|
        'epochs': 500,
 | 
						|
        'train_batch_size': 256,
 | 
						|
 | 
						|
        'train_dataset': 'cifar10_train_augmented',
 | 
						|
        'valid_dataset': 'cifar10_valid_no_augment',
 | 
						|
    })
 | 
						|
    # Set model for saving/loading
 | 
						|
    experiment.add_pytorch_models({'model': conf.model})
 | 
						|
    # Start the experiment and run the training loop
 | 
						|
    with experiment.start():
 | 
						|
        conf.run()
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |