mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 10:48:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			114 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| ---
 | |
| title: MNIST Experiment
 | |
| summary: >
 | |
|   This is a reusable trainer for MNIST dataset
 | |
| ---
 | |
| 
 | |
| # MNIST Experiment
 | |
| """
 | |
| 
 | |
| import torch.nn as nn
 | |
| import torch.utils.data
 | |
| from labml_helpers.module import Module
 | |
| 
 | |
| from labml import tracker
 | |
| from labml.configs import option
 | |
| from labml_helpers.datasets.mnist import MNISTConfigs as MNISTDatasetConfigs
 | |
| from labml_helpers.device import DeviceConfigs
 | |
| from labml_helpers.metrics.accuracy import Accuracy
 | |
| from labml_helpers.train_valid import TrainValidConfigs, BatchIndex, hook_model_outputs
 | |
| from labml_nn.optimizers.configs import OptimizerConfigs
 | |
| 
 | |
| 
 | |
| class MNISTConfigs(MNISTDatasetConfigs, TrainValidConfigs):
 | |
|     """
 | |
|     <a id="MNISTConfigs">
 | |
|     ## Trainer configurations
 | |
|     </a>
 | |
|     """
 | |
| 
 | |
|     # Optimizer
 | |
|     optimizer: torch.optim.Adam
 | |
|     # Training device
 | |
|     device: torch.device = DeviceConfigs()
 | |
| 
 | |
|     # Classification model
 | |
|     model: Module
 | |
|     # Number of epochs to train for
 | |
|     epochs: int = 10
 | |
| 
 | |
|     # Number of times to switch between training and validation within an epoch
 | |
|     inner_iterations = 10
 | |
| 
 | |
|     # Accuracy function
 | |
|     accuracy = Accuracy()
 | |
|     # Loss function
 | |
|     loss_func = nn.CrossEntropyLoss()
 | |
| 
 | |
|     def init(self):
 | |
|         """
 | |
|         ### Initialization
 | |
|         """
 | |
|         # Set tracker configurations
 | |
|         tracker.set_scalar("loss.*", True)
 | |
|         tracker.set_scalar("accuracy.*", True)
 | |
|         # Add a hook to log module outputs
 | |
|         hook_model_outputs(self.mode, self.model, 'model')
 | |
|         # Add accuracy as a state module.
 | |
|         # The name is probably confusing, since it's meant to store
 | |
|         # states between training and validation for RNNs.
 | |
|         # This will keep the accuracy metric stats separate for training and validation.
 | |
|         self.state_modules = [self.accuracy]
 | |
| 
 | |
|     def step(self, batch: any, batch_idx: BatchIndex):
 | |
|         """
 | |
|         ### Training or validation step
 | |
|         """
 | |
| 
 | |
|         # Move data to the device
 | |
|         data, target = batch[0].to(self.device), batch[1].to(self.device)
 | |
| 
 | |
|         # Update global step (number of samples processed) when in training mode
 | |
|         if self.mode.is_train:
 | |
|             tracker.add_global_step(len(data))
 | |
| 
 | |
|         # Whether to capture model outputs
 | |
|         with self.mode.update(is_log_activations=batch_idx.is_last):
 | |
|             # Get model outputs.
 | |
|             output = self.model(data)
 | |
| 
 | |
|         # Calculate and log loss
 | |
|         loss = self.loss_func(output, target)
 | |
|         tracker.add("loss.", loss)
 | |
| 
 | |
|         # Calculate and log accuracy
 | |
|         self.accuracy(output, target)
 | |
|         self.accuracy.track()
 | |
| 
 | |
|         # Train the model
 | |
|         if self.mode.is_train:
 | |
|             # Calculate gradients
 | |
|             loss.backward()
 | |
|             # Take optimizer step
 | |
|             self.optimizer.step()
 | |
|             # Log the model parameters and gradients on last batch of every epoch
 | |
|             if batch_idx.is_last:
 | |
|                 tracker.add('model', self.model)
 | |
|             # Clear the gradients
 | |
|             self.optimizer.zero_grad()
 | |
| 
 | |
|         # Save the tracked metrics
 | |
|         tracker.save()
 | |
| 
 | |
| 
 | |
| @option(MNISTConfigs.optimizer)
 | |
| def _optimizer(c: MNISTConfigs):
 | |
|     """
 | |
|     ### Default optimizer configurations
 | |
|     """
 | |
|     opt_conf = OptimizerConfigs()
 | |
|     opt_conf.parameters = c.model.parameters()
 | |
|     opt_conf.optimizer = 'Adam'
 | |
|     return opt_conf
 | 
