mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			386 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			386 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| \(
 | |
|    \def\hl1#1{{\color{orange}{#1}}}
 | |
|    \def\blue#1{{\color{cyan}{#1}}}
 | |
|    \def\green#1{{\color{yellowgreen}{#1}}}
 | |
| \)
 | |
| """
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch import nn
 | |
| 
 | |
| from labml import tracker, experiment, logger, monit
 | |
| from labml_helpers.module import Module
 | |
| from labml_helpers.schedule import Piecewise
 | |
| from labml_nn.rl.dqn import QFuncLoss
 | |
| from labml_nn.rl.dqn.replay_buffer import ReplayBuffer
 | |
| from labml_nn.rl.game import Worker
 | |
| 
 | |
| if torch.cuda.is_available():
 | |
|     device = torch.device("cuda:0")
 | |
| else:
 | |
|     device = torch.device("cpu")
 | |
| 
 | |
| 
 | |
| class Model(Module):
 | |
|     """
 | |
|     ## <a name="model"></a>Neural Network Model for $Q$ Values
 | |
| 
 | |
|     #### Dueling Network ⚔️
 | |
|     We are using a [dueling network](https://arxiv.org/abs/1511.06581)
 | |
|      to calculate Q-values.
 | |
|     Intuition behind dueling network architure is that in most states
 | |
|      the action doesn't matter,
 | |
|     and in some states the action is significant. Dueling network allows
 | |
|      this to be represented very well.
 | |
| 
 | |
|     \begin{align}
 | |
|         Q^\pi(s,a) &= V^\pi(s) + A^\pi(s, a)
 | |
|         \\
 | |
|         \mathop{\mathbb{E}}_{a \sim \pi(s)}
 | |
|          \Big[
 | |
|           A^\pi(s, a)
 | |
|          \Big]
 | |
|         &= 0
 | |
|     \end{align}
 | |
| 
 | |
|     So we create two networks for $V$ and $A$ and get $Q$ from them.
 | |
|     $$
 | |
|         Q(s, a) = V(s) +
 | |
|         \Big(
 | |
|             A(s, a) - \frac{1}{|\mathcal{A}|} \sum_{a' \in \mathcal{A}} A(s, a')
 | |
|         \Big)
 | |
|     $$
 | |
|     We share the initial layers of the $V$ and $A$ networks.
 | |
|     """
 | |
| 
 | |
|     def __init__(self):
 | |
|         """
 | |
|         ### Initialize
 | |
| 
 | |
|         We need `scope` because we need multiple copies of variables
 | |
|          for target network and training network.
 | |
|         """
 | |
| 
 | |
|         super().__init__()
 | |
|         self.conv = nn.Sequential(
 | |
|             # The first convolution layer takes a
 | |
|             # 84x84 frame and produces a 20x20 frame
 | |
|             nn.Conv2d(in_channels=4, out_channels=32, kernel_size=8, stride=4),
 | |
|             nn.ReLU(),
 | |
| 
 | |
|             # The second convolution layer takes a
 | |
|             # 20x20 frame and produces a 9x9 frame
 | |
|             nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
 | |
|             nn.ReLU(),
 | |
| 
 | |
|             # The third convolution layer takes a
 | |
|             # 9x9 frame and produces a 7x7 frame
 | |
|             nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
 | |
|             nn.ReLU(),
 | |
|         )
 | |
| 
 | |
|         # A fully connected layer takes the flattened
 | |
|         # frame from third convolution layer, and outputs
 | |
|         # 512 features
 | |
|         self.lin = nn.Linear(in_features=7 * 7 * 64, out_features=512)
 | |
| 
 | |
|         self.state_score = nn.Sequential(
 | |
|             nn.Linear(in_features=512, out_features=256),
 | |
|             nn.ReLU(),
 | |
|             nn.Linear(in_features=256, out_features=1),
 | |
|         )
 | |
|         self.action_score = nn.Sequential(
 | |
|             nn.Linear(in_features=512, out_features=256),
 | |
|             nn.ReLU(),
 | |
|             nn.Linear(in_features=256, out_features=4),
 | |
|         )
 | |
| 
 | |
|         #
 | |
|         self.activation = nn.ReLU()
 | |
| 
 | |
|     def __call__(self, obs: torch.Tensor):
 | |
|         h = self.conv(obs)
 | |
|         h = h.reshape((-1, 7 * 7 * 64))
 | |
| 
 | |
|         h = self.activation(self.lin(h))
 | |
| 
 | |
|         action_score = self.action_score(h)
 | |
|         state_score = self.state_score(h)
 | |
| 
 | |
|         # $Q(s, a) =V(s) + \Big(A(s, a) - \frac{1}{|\mathcal{A}|} \sum_{a' \in \mathcal{A}} A(s, a')\Big)$
 | |
|         action_score_centered = action_score - action_score.mean(dim=-1, keepdim=True)
 | |
|         q = state_score + action_score_centered
 | |
| 
 | |
|         return q
 | |
| 
 | |
| 
 | |
| def obs_to_torch(obs: np.ndarray) -> torch.Tensor:
 | |
|     """Scale observations from `[0, 255]` to `[0, 1]`"""
 | |
|     return torch.tensor(obs, dtype=torch.float32, device=device) / 255.
 | |
| 
 | |
| 
 | |
| class Main(object):
 | |
|     """
 | |
|     ## <a name="main"></a>Main class
 | |
|     This class runs the training loop.
 | |
|     It initializes TensorFlow, handles logging and monitoring,
 | |
|      and runs workers as multiple processes.
 | |
|     """
 | |
| 
 | |
|     def __init__(self):
 | |
|         """
 | |
|         ### Initialize
 | |
|         """
 | |
| 
 | |
|         # #### Configurations
 | |
| 
 | |
|         # number of workers
 | |
|         self.n_workers = 8
 | |
|         # steps sampled on each update
 | |
|         self.worker_steps = 4
 | |
|         # number of training iterations
 | |
|         self.train_epochs = 8
 | |
| 
 | |
|         # number of updates
 | |
|         self.updates = 1_000_000
 | |
|         # size of mini batch for training
 | |
|         self.mini_batch_size = 32
 | |
| 
 | |
|         # exploration as a function of time step
 | |
|         self.exploration_coefficient = Piecewise(
 | |
|             [
 | |
|                 (0, 1.0),
 | |
|                 (25_000, 0.1),
 | |
|                 (self.updates / 2, 0.01)
 | |
|             ], outside_value=0.01)
 | |
| 
 | |
|         # update target network every 250 update
 | |
|         self.update_target_model = 250
 | |
| 
 | |
|         # $\beta$ for replay buffer as a function of time steps
 | |
|         self.prioritized_replay_beta = Piecewise(
 | |
|             [
 | |
|                 (0, 0.4),
 | |
|                 (self.updates, 1)
 | |
|             ], outside_value=1)
 | |
| 
 | |
|         # replay buffer
 | |
|         self.replay_buffer = ReplayBuffer(2 ** 14, 0.6)
 | |
| 
 | |
|         self.model = Model().to(device)
 | |
|         self.target_model = Model().to(device)
 | |
| 
 | |
|         # last observation for each worker
 | |
|         # create workers
 | |
|         self.workers = [Worker(47 + i) for i in range(self.n_workers)]
 | |
| 
 | |
|         # initialize tensors for observations
 | |
|         self.obs = np.zeros((self.n_workers, 4, 84, 84), dtype=np.uint8)
 | |
|         for worker in self.workers:
 | |
|             worker.child.send(("reset", None))
 | |
|         for i, worker in enumerate(self.workers):
 | |
|             self.obs[i] = worker.child.recv()
 | |
| 
 | |
|         self.loss_func = QFuncLoss(0.99)
 | |
|         # optimizer
 | |
|         self.optimizer = torch.optim.Adam(self.model.parameters(), lr=2.5e-4)
 | |
| 
 | |
|     def _sample_action(self, q_value: torch.Tensor, exploration_coefficient: float):
 | |
|         """
 | |
|         #### $\epsilon$-greedy Sampling
 | |
|         When sampling actions we use a $\epsilon$-greedy strategy, where we
 | |
|         take a greedy action with probabiliy $1 - \epsilon$ and
 | |
|         take a random action with probability $\epsilon$.
 | |
|         We refer to $\epsilon$ as *exploration*.
 | |
|         """
 | |
| 
 | |
|         with torch.no_grad():
 | |
|             greedy_action = torch.argmax(q_value, dim=-1)
 | |
|             random_action = torch.randint(q_value.shape[-1], greedy_action.shape, device=q_value.device)
 | |
| 
 | |
|             is_choose_rand = torch.rand(greedy_action.shape, device=q_value.device) < exploration_coefficient
 | |
| 
 | |
|             return torch.where(is_choose_rand, random_action, greedy_action).cpu().numpy()
 | |
| 
 | |
|     def sample(self, exploration_coefficient: float):
 | |
|         """### Sample data"""
 | |
| 
 | |
|         with torch.no_grad():
 | |
|             # sample `SAMPLE_STEPS`
 | |
|             for t in range(self.worker_steps):
 | |
|                 # sample actions
 | |
|                 q_value = self.model(obs_to_torch(self.obs))
 | |
|                 actions = self._sample_action(q_value, exploration_coefficient)
 | |
| 
 | |
|                 # run sampled actions on each worker
 | |
|                 for w, worker in enumerate(self.workers):
 | |
|                     worker.child.send(("step", actions[w]))
 | |
| 
 | |
|                 # collect information from each worker
 | |
|                 for w, worker in enumerate(self.workers):
 | |
|                     # get results after executing the actions
 | |
|                     next_obs, reward, done, info = worker.child.recv()
 | |
| 
 | |
|                     # add transition to replay buffer
 | |
|                     self.replay_buffer.add(self.obs[w], actions[w], reward, next_obs, done)
 | |
| 
 | |
|                     # update episode information
 | |
|                     # collect episode info, which is available if an episode finished;
 | |
|                     #  this includes total reward and length of the episode -
 | |
|                     #  look at `Game` to see how it works.
 | |
|                     # We also add a game frame to it for monitoring.
 | |
|                     if info:
 | |
|                         tracker.add('reward', info['reward'])
 | |
|                         tracker.add('length', info['length'])
 | |
| 
 | |
|                     # update current observation
 | |
|                     self.obs[w] = next_obs
 | |
| 
 | |
|     def train(self, beta: float):
 | |
|         """
 | |
|         ### Train the model
 | |
| 
 | |
|         We want to find optimal action-value function.
 | |
| 
 | |
|         \begin{align}
 | |
|             Q^*(s,a) &= \max_\pi \mathbb{E} \Big[
 | |
|                 r_t + \gamma r_{t + 1} + \gamma^2 r_{t + 2} + ... | s_t = s, a_t = a, \pi
 | |
|             \Big]
 | |
|         \\
 | |
|             Q^*(s,a) &= \mathop{\mathbb{E}}_{s' \sim \large{\varepsilon}} \Big[
 | |
|                 r + \gamma \max_{a'} Q^* (s', a') | s, a
 | |
|             \Big]
 | |
|         \end{align}
 | |
| 
 | |
|         #### Target network 🎯
 | |
|         In order to improve stability we use experience replay that randomly sample
 | |
|         from previous experience $U(D)$. We also use a Q network
 | |
|         with a separate set of paramters $\hl1{\theta_i^{-}}$ to calculate the target.
 | |
|         $\hl1{\theta_i^{-}}$ is updated periodically.
 | |
|         This is according to the [paper by DeepMind](https://deepmind.com/research/dqn/).
 | |
| 
 | |
|         So the loss function is,
 | |
|         $$
 | |
|         \mathcal{L}_i(\theta_i) = \mathop{\mathbb{E}}_{(s,a,r,s') \sim U(D)}
 | |
|         \bigg[
 | |
|             \Big(
 | |
|                 r + \gamma \max_{a'} Q(s', a'; \hl1{\theta_i^{-}}) - Q(s,a;\theta_i)
 | |
|             \Big) ^ 2
 | |
|         \bigg]
 | |
|         $$
 | |
| 
 | |
|         #### Double $Q$-Learning
 | |
|         The max operator in the above calculation uses same network for both
 | |
|         selecting the best action and for evaluating the value.
 | |
|         That is,
 | |
|         $$
 | |
|         \max_{a'} Q(s', a'; \theta) = \blue{Q}
 | |
|         \Big(
 | |
|             s', \mathop{\operatorname{argmax}}_{a'}
 | |
|             \blue{Q}(s', a'; \blue{\theta}); \blue{\theta}
 | |
|         \Big)
 | |
|         $$
 | |
|         We use [double Q-learning](https://arxiv.org/abs/1509.06461), where
 | |
|         the $\operatorname{argmax}$ is taken from $\theta_i$ and
 | |
|         the value is taken from $\theta_i^{-}$.
 | |
| 
 | |
|         And the loss function becomes,
 | |
|         \begin{align}
 | |
|             \mathcal{L}_i(\theta_i) = \mathop{\mathbb{E}}_{(s,a,r,s') \sim U(D)}
 | |
|             \Bigg[
 | |
|                 \bigg(
 | |
|                     &r + \gamma \blue{Q}
 | |
|                     \Big(
 | |
|                         s',
 | |
|                         \mathop{\operatorname{argmax}}_{a'}
 | |
|                             \green{Q}(s', a'; \green{\theta_i}); \blue{\theta_i^{-}}
 | |
|                     \Big)
 | |
|                     \\
 | |
|                     - &Q(s,a;\theta_i)
 | |
|                 \bigg) ^ 2
 | |
|             \Bigg]
 | |
|         \end{align}
 | |
|         """
 | |
| 
 | |
|         for _ in range(self.train_epochs):
 | |
|             # sample from priority replay buffer
 | |
|             samples = self.replay_buffer.sample(self.mini_batch_size, beta)
 | |
|             # train network
 | |
|             q_value = self.model(obs_to_torch(samples['obs']))
 | |
| 
 | |
|             with torch.no_grad():
 | |
|                 double_q_value = self.model(obs_to_torch(samples['next_obs']))
 | |
|                 target_q_value = self.target_model(obs_to_torch(samples['next_obs']))
 | |
| 
 | |
|             td_errors, loss = self.loss_func(q_value,
 | |
|                                              q_value.new_tensor(samples['action']),
 | |
|                                              double_q_value, target_q_value,
 | |
|                                              q_value.new_tensor(samples['done']),
 | |
|                                              q_value.new_tensor(samples['reward']),
 | |
|                                              q_value.new_tensor(samples['weights']))
 | |
| 
 | |
|             # $p_i = |\delta_i| + \epsilon$
 | |
|             new_priorities = np.abs(td_errors.cpu().numpy()) + 1e-6
 | |
|             # update replay buffer
 | |
|             self.replay_buffer.update_priorities(samples['indexes'], new_priorities)
 | |
| 
 | |
|             # compute gradients
 | |
|             self.optimizer.zero_grad()
 | |
|             loss.backward()
 | |
|             torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=0.5)
 | |
|             self.optimizer.step()
 | |
| 
 | |
|     def run_training_loop(self):
 | |
|         """
 | |
|         ### Run training loop
 | |
|         """
 | |
| 
 | |
|         # copy to target network initially
 | |
|         self.target_model.load_state_dict(self.model.state_dict())
 | |
| 
 | |
|         # last 100 episode information
 | |
|         tracker.set_queue('reward', 100, True)
 | |
|         tracker.set_queue('length', 100, True)
 | |
| 
 | |
|         for update in monit.loop(self.updates):
 | |
|             # $\epsilon$, exploration fraction
 | |
|             exploration = self.exploration_coefficient(update)
 | |
|             tracker.add('exploration', exploration)
 | |
|             # $\beta$ for priority replay
 | |
|             beta = self.prioritized_replay_beta(update)
 | |
|             tracker.add('beta', beta)
 | |
| 
 | |
|             # sample with current policy
 | |
|             self.sample(exploration)
 | |
| 
 | |
|             if self.replay_buffer.is_full():
 | |
|                 # train the model
 | |
|                 self.train(beta)
 | |
| 
 | |
|                 # periodically update target network
 | |
|                 if update % self.update_target_model == 0:
 | |
|                     self.target_model.load_state_dict(self.model.state_dict())
 | |
| 
 | |
|             tracker.save()
 | |
|             if (update + 1) % 1_000 == 0:
 | |
|                 logger.log()
 | |
| 
 | |
|     def destroy(self):
 | |
|         """
 | |
|         ### Destroy
 | |
|         Stop the workers
 | |
|         """
 | |
|         for worker in self.workers:
 | |
|             worker.child.send(("close", None))
 | |
| 
 | |
| 
 | |
| # ## Run it
 | |
| if __name__ == "__main__":
 | |
|     experiment.create(name='dqn')
 | |
|     m = Main()
 | |
|     with experiment.start():
 | |
|         m.run_training_loop()
 | |
|     m.destroy()
 |