mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-30 18:27:03 +08:00
583 lines
42 KiB
HTML
583 lines
42 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="ja">
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||
<meta name="description" content="人気のある勾配降下ベースのオプティマイザーのPyTorch実装/チュートリアルのセット。現在、Adam、Masgrad、および Adamのオプティマイザーが含まれています。"/>
|
||
|
||
<meta name="twitter:card" content="summary"/>
|
||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta name="twitter:title" content="オプティマイザー"/>
|
||
<meta name="twitter:description" content="人気のある勾配降下ベースのオプティマイザーのPyTorch実装/チュートリアルのセット。現在、Adam、Masgrad、および Adamのオプティマイザーが含まれています。"/>
|
||
<meta name="twitter:site" content="@labmlai"/>
|
||
<meta name="twitter:creator" content="@labmlai"/>
|
||
|
||
<meta property="og:url" content="https://nn.labml.ai/optimizers/index.html"/>
|
||
<meta property="og:title" content="オプティマイザー"/>
|
||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta property="og:site_name" content="オプティマイザー"/>
|
||
<meta property="og:type" content="object"/>
|
||
<meta property="og:title" content="オプティマイザー"/>
|
||
<meta property="og:description" content="人気のある勾配降下ベースのオプティマイザーのPyTorch実装/チュートリアルのセット。現在、Adam、Masgrad、および Adamのオプティマイザーが含まれています。"/>
|
||
|
||
<title>オプティマイザー</title>
|
||
<link rel="shortcut icon" href="/icon.png"/>
|
||
<link rel="stylesheet" href="../pylit.css?v=1">
|
||
<link rel="canonical" href="https://nn.labml.ai/optimizers/index.html"/>
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-4V3HC8HBLH');
|
||
</script>
|
||
</head>
|
||
<body>
|
||
<div id='container'>
|
||
<div id="background"></div>
|
||
<div class='section'>
|
||
<div class='docs'>
|
||
<p>
|
||
<a class="parent" href="/">home</a>
|
||
<a class="parent" href="index.html">optimizers</a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
|
||
<img alt="Github"
|
||
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
|
||
style="max-width:100%;"/></a>
|
||
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
|
||
<img alt="Twitter"
|
||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||
style="max-width:100%;"/></a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/optimizers/__init__.py" target="_blank">
|
||
View code on Github</a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-0'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-0'>#</a>
|
||
</div>
|
||
<h1>オプティマイザー</h1>
|
||
<h2>オプティマイザーの実装</h2>
|
||
<ul><li><a href="adam.html">アダム・オプティマイザー</a></li>
|
||
<li><a href="amsgrad.html">マスグラードオプティマイザー</a></li>
|
||
<li><a href="adam_warmup.html">ウォームアップ機能付き Adam オプティマイザー</a></li>
|
||
<li><a href="noam.html">ノームオプティマイザー</a></li>
|
||
<li><a href="radam.html">修正されたアダムオプティマイザー</a></li>
|
||
<li><a href="ada_belief.html">アダブリリーフオプティマイザー</a></li></ul>
|
||
<p>この <a href="mnist_experiment.html">MNIST の例では</a>、これらのオプティマイザーを使用しています。</p>
|
||
<h2>汎用アダプティブオプティマイザー基本クラスとウェイトディケイ</h2>
|
||
<p>このファイルは、<em>Adam</em> の共通基本クラスとその拡張を定義しています。基本クラスは、再利用が可能なため、最小限のコードで他のオプティマイザを実装するのに役立ちます</p>。
|
||
<p>また、L2の重み減衰用の特別なクラスを定義しているので、各オプティマイザー内に実装する必要がなく、オプティマイザーを変更せずにL1のような他の重み減衰にも簡単に拡張できます。</p>
|
||
<p>PyTorch オプティマイザの概念は次のとおりです。</p>
|
||
<h3>パラメータグループ</h3>
|
||
<p>PyTorch オプティマイザーは、パラメーターをグループと呼ばれるセットにグループ化します。各グループには、学習率などの独自のハイパーパラメータを設定できます</p>。
|
||
<p>たいていの場合、グループが 1 つしかありません。このとき、オプティマイザを次のように初期化します</p>。
|
||
<pre class="highlight lang-python"><code><span></span><span class="n">Optimizer</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span></code></pre>
|
||
<p>オプティマイザを初期化するときに、複数のパラメータグループを定義できます。</p>
|
||
<pre class="highlight lang-python"><code><span></span><span class="n">Optimizer</span><span class="p">([{</span><span class="s1">'params'</span><span class="p">:</span> <span class="n">model1</span><span class="o">.</span><span class="n">parameters</span><span class="p">()},</span> <span class="p">{</span><span class="s1">'params'</span><span class="p">:</span> <span class="n">model2</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="s1">'lr'</span><span class="p">:</span> <span class="mi">2</span><span class="p">}])</span></code></pre>
|
||
<p>ここにグループのリストを渡します。各グループは辞書で、パラメータは 'params' です。任意のハイパーパラメータも指定します。ハイパーパラメータが定義されていない場合は、デフォルトでオプティマイザレベルのデフォルトになります</p>。
|
||
<p>を使用してこれらのグループとそのハイパーパラメータにアクセスしたり、変更したりすることができます。<code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span></code>
|
||
私が出会ったほとんどの学習率スケジュールの実装は、これにアクセスして「lr」を変更します</p>。
|
||
<h3>州</h3>
|
||
<p>オプティマイザーは、各パラメーター (テンソル) の状態 (辞書) を辞書に保持します。<code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">state</span></code>
|
||
ここで、オプティマイザーは指数平均などを管理します</p>。
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">62</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Any</span>
|
||
<span class="lineno">63</span>
|
||
<span class="lineno">64</span><span class="kn">import</span> <span class="nn">torch</span>
|
||
<span class="lineno">65</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||
<span class="lineno">66</span><span class="kn">from</span> <span class="nn">torch.optim.optimizer</span> <span class="kn">import</span> <span class="n">Optimizer</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-1'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-1'>#</a>
|
||
</div>
|
||
<h2><em>Adam</em> と拡張機能の基底クラス</h2>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">69</span><span class="k">class</span> <span class="nc">GenericAdaptiveOptimizer</span><span class="p">(</span><span class="n">Optimizer</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-2'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-2'>#</a>
|
||
</div>
|
||
<h3>[初期化]</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">params</span></code>
|
||
パラメータのコレクションまたはパラメータグループのセットです。</li>
|
||
<li><code class="highlight"><span></span><span class="n">defaults</span></code>
|
||
デフォルトのハイパーパラメータの辞書</li>
|
||
<li><code class="highlight"><span></span><span class="n">lr</span></code>
|
||
は学習率 <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span></span></li>
|
||
<li><code class="highlight"><span></span><span class="n">betas</span></code>
|
||
はタプルです <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></li>
|
||
</ul><li><code class="highlight"><span></span><span class="n">eps</span></code>
|
||
は <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">ϵ</span></span></span></span></span></li>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">74</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">defaults</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="n">lr</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">],</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-3'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-3'>#</a>
|
||
</div>
|
||
<p>ハイパーパラメータを確認</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">86</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">lr</span><span class="p">:</span>
|
||
<span class="lineno">87</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid learning rate: </span><span class="si">{</span><span class="n">lr</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">88</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">eps</span><span class="p">:</span>
|
||
<span class="lineno">89</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid epsilon value: </span><span class="si">{</span><span class="n">eps</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">90</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">betas</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><</span> <span class="mf">1.0</span><span class="p">:</span>
|
||
<span class="lineno">91</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid beta parameter at index 0: </span><span class="si">{</span><span class="n">betas</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">92</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">betas</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o"><</span> <span class="mf">1.0</span><span class="p">:</span>
|
||
<span class="lineno">93</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid beta parameter at index 1: </span><span class="si">{</span><span class="n">betas</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-4'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-4'>#</a>
|
||
</div>
|
||
<p>ハイパーパラメータをデフォルトに追加</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">96</span> <span class="n">defaults</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="nb">dict</span><span class="p">(</span><span class="n">lr</span><span class="o">=</span><span class="n">lr</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">))</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-5'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-5'>#</a>
|
||
</div>
|
||
<p>PyTorch オプティマイザーを初期化します。これにより、デフォルトのハイパーパラメータを使用してパラメータグループが作成されます</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">99</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">defaults</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-6'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-6'>#</a>
|
||
</div>
|
||
<h3>与えられたパラメータテンソルの状態を初期化</h3>
|
||
<p><code class="highlight"><span></span><span class="n">state</span></code>
|
||
これをオーバーライドしてパラメータを初期化するコードを使うべきです。<code class="highlight"><span></span><span class="n">param</span></code>
|
||
<code class="highlight"><span></span><span class="n">group</span></code>
|
||
<code class="highlight"><span></span><span class="n">param</span></code>
|
||
が属するパラメータグループディクショナリです。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">101</span> <span class="k">def</span> <span class="nf">init_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">param</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-7'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-7'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">108</span> <span class="k">pass</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-8'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-8'>#</a>
|
||
</div>
|
||
<h3>パラメーターテンソルでオプティマイザーステップを実行する</h3>
|
||
<p>これをオーバーライドして、<code class="highlight"><span></span><span class="n">param</span></code>
|
||
テンソルで最適化ステップを実行する必要があります。ここで<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span></span><code class="highlight"><span></span><span class="n">grad</span></code>
|
||
、はそのパラメーターの勾配、はそのパラメーターのオプティマイザー状態ディクショナリ、<code class="highlight"><span></span><span class="n">state</span></code>
|
||
<code class="highlight"><span></span><span class="n">group</span></code>
|
||
はディクショナリが属するパラメーターグループです。<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> <code class="highlight"><span></span><span class="n">param</span></code>
|
||
</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">110</span> <span class="k">def</span> <span class="nf">step_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-9'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-9'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">119</span> <span class="k">pass</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-10'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-10'>#</a>
|
||
</div>
|
||
<h3>オプティマイザーステップ</h3>
|
||
<p><em>すべてのAdamベースのオプティマイザーが必要とする一般的な処理を行うテンプレートメソッドを作成しました</em>。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">121</span> <span class="nd">@torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">()</span>
|
||
<span class="lineno">122</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">closure</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-11'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-11'>#</a>
|
||
</div>
|
||
<p>損失を計算します。</p>
|
||
<p>🤔 いつこれが必要なのかわかりません。自分で呼び出すのではなく、<code class="highlight"><span></span><span class="n">loss</span><span class="o">.</span><span class="n">backward</span></code>
|
||
損失を計算して損失を出して返す関数を定義すれば、その関数を渡せると思います<code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span></code>
|
||
。🤷♂️</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">133</span> <span class="n">loss</span> <span class="o">=</span> <span class="kc">None</span>
|
||
<span class="lineno">134</span> <span class="k">if</span> <span class="n">closure</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="lineno">135</span> <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">enable_grad</span><span class="p">():</span>
|
||
<span class="lineno">136</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">closure</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-12'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-12'>#</a>
|
||
</div>
|
||
<p>パラメータグループを繰り返し処理する</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">139</span> <span class="k">for</span> <span class="n">group</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-13'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-13'>#</a>
|
||
</div>
|
||
<p>パラメータグループ内のパラメータを繰り返し処理します</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">141</span> <span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">group</span><span class="p">[</span><span class="s1">'params'</span><span class="p">]:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-14'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-14'>#</a>
|
||
</div>
|
||
<p>パラメータにグラデーションがない場合はスキップ</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">143</span> <span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="lineno">144</span> <span class="k">continue</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-15'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-15'>#</a>
|
||
</div>
|
||
<p>勾配テンソルを取得</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">146</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">data</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-16'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-16'>#</a>
|
||
</div>
|
||
<p>スパースグラデーションは扱いません</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">if</span> <span class="n">grad</span><span class="o">.</span><span class="n">is_sparse</span><span class="p">:</span>
|
||
<span class="lineno">149</span> <span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s1">'GenericAdaptiveOptimizer does not support sparse gradients,'</span>
|
||
<span class="lineno">150</span> <span class="s1">' please consider SparseAdam instead'</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-17'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-17'>#</a>
|
||
</div>
|
||
<p>パラメータの状態を取得</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">153</span> <span class="n">state</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">state</span><span class="p">[</span><span class="n">param</span><span class="p">]</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-18'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-18'>#</a>
|
||
</div>
|
||
<p>状態が初期化されていない場合は状態を初期化します</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">156</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">state</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
||
<span class="lineno">157</span> <span class="bp">self</span><span class="o">.</span><span class="n">init_state</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">param</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-19'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-19'>#</a>
|
||
</div>
|
||
<p>パラメータの最適化手順を実行してください</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">160</span> <span class="bp">self</span><span class="o">.</span><span class="n">step_param</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">grad</span><span class="p">,</span> <span class="n">param</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-20'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-20'>#</a>
|
||
</div>
|
||
<p>決済から計算した損失額を返金</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">163</span> <span class="k">return</span> <span class="n">loss</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-21'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-21'>#</a>
|
||
</div>
|
||
<h2>L2 ウェイト・ディケイ</h2>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">166</span><span class="k">class</span> <span class="nc">WeightDecay</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-22'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-22'>#</a>
|
||
</div>
|
||
<h3>体重減衰を初期化</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">weight_decay</span></code>
|
||
は減衰係数</li>
|
||
<li><code class="highlight"><span></span><span class="n">weight_decouple</span></code>
|
||
グラデーションにウェイトディケイを追加するか、パラメータから直接ディケイを加えるかを示すフラグです。グラデーションに追加すると、通常のオプティマイザーの更新が行われます</li>。
|
||
<li><code class="highlight"><span></span><span class="n">absolute</span></code>
|
||
このフラグは重量減衰係数が絶対値かどうかを示します。これは、ディケイをパラメータに直接適用する場合に適用できます。これが false の場合、実際の減衰は <code class="highlight"><span></span><span class="n">weight_decay</span></code>
|
||
</li>
|
||
</ul><li><code class="highlight"><span></span><span class="n">learning_rate</span></code>
|
||
。</li>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">171</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">weight_decouple</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">absolute</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-23'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-23'>#</a>
|
||
</div>
|
||
<p>ハイパーパラメータをチェック</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">184</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">weight_decay</span><span class="p">:</span>
|
||
<span class="lineno">185</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid weight_decay value: </span><span class="si">{</span><span class="n">weight_decay</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">186</span>
|
||
<span class="lineno">187</span> <span class="bp">self</span><span class="o">.</span><span class="n">absolute</span> <span class="o">=</span> <span class="n">absolute</span>
|
||
<span class="lineno">188</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decouple</span> <span class="o">=</span> <span class="n">weight_decouple</span>
|
||
<span class="lineno">189</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span> <span class="o">=</span> <span class="n">weight_decay</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-24'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-24'>#</a>
|
||
</div>
|
||
<p>パラメータグループのデフォルト値を返す</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">191</span> <span class="k">def</span> <span class="nf">defaults</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-25'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-25'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">195</span> <span class="k">return</span> <span class="nb">dict</span><span class="p">(</span><span class="n">weight_decay</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-26'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-26'>#</a>
|
||
</div>
|
||
<h3>ウェイトディケイを実行してグラデーションを戻す</h3>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">197</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">,</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">]):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-27'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-27'>#</a>
|
||
</div>
|
||
<p>パラメータで直接ディケイを行う場合</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">203</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decouple</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-28'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-28'>#</a>
|
||
</div>
|
||
<p>重量減衰係数が絶対値の場合</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">205</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">absolute</span><span class="p">:</span>
|
||
<span class="lineno">206</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-29'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-29'>#</a>
|
||
</div>
|
||
<p>それ以外の場合は、</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">208</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">209</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">group</span><span class="p">[</span><span class="s1">'lr'</span><span class="p">]</span> <span class="o">*</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-30'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-30'>#</a>
|
||
</div>
|
||
<p>変更されていないグラデーションを返す</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">211</span> <span class="k">return</span> <span class="n">grad</span>
|
||
<span class="lineno">212</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">213</span> <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">]</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-31'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-31'>#</a>
|
||
</div>
|
||
<p>グラデーションにウェイトディケイを追加し、変更したグラデーションを返します。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">215</span> <span class="k">return</span> <span class="n">grad</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">])</span>
|
||
<span class="lineno">216</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">217</span> <span class="k">return</span> <span class="n">grad</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='footer'>
|
||
<a href="https://papers.labml.ai">Trending Research Papers</a>
|
||
<a href="https://labml.ai">labml.ai</a>
|
||
</div>
|
||
</div>
|
||
<script src=../interactive.js?v=1"></script>
|
||
<script>
|
||
function handleImages() {
|
||
var images = document.querySelectorAll('p>img')
|
||
|
||
for (var i = 0; i < images.length; ++i) {
|
||
handleImage(images[i])
|
||
}
|
||
}
|
||
|
||
function handleImage(img) {
|
||
img.parentElement.style.textAlign = 'center'
|
||
|
||
var modal = document.createElement('div')
|
||
modal.id = 'modal'
|
||
|
||
var modalContent = document.createElement('div')
|
||
modal.appendChild(modalContent)
|
||
|
||
var modalImage = document.createElement('img')
|
||
modalContent.appendChild(modalImage)
|
||
|
||
var span = document.createElement('span')
|
||
span.classList.add('close')
|
||
span.textContent = 'x'
|
||
modal.appendChild(span)
|
||
|
||
img.onclick = function () {
|
||
console.log('clicked')
|
||
document.body.appendChild(modal)
|
||
modalImage.src = img.src
|
||
}
|
||
|
||
span.onclick = function () {
|
||
document.body.removeChild(modal)
|
||
}
|
||
}
|
||
|
||
handleImages()
|
||
</script>
|
||
</body>
|
||
</html> |