Files

165 lines
4.8 KiB
Python
Executable File

#!/bin/python
import torch.nn as nn
import torch.optim as optim
from torchsummary import summary
from functools import partial
from skimage.filters import sobel, sobel_h, roberts
from models.cnn import CNN
from utils.dataloader import *
from utils.train import Trainer
# Check if GPU is available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device: " + str(device))
# Cifar 10 Datasets location
save='./data/Cifar10'
# Transformations train
transform_train = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# Load train dataset and dataloader
trainset = LoadCifar10DatasetTrain(save, transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=4)
# Transformations test
transform_test = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# Load test dataset and dataloader
testset = LoadCifar10DatasetTest(save, transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=4)
# Create CNN model
def GetCNN():
cnn = CNN( in_features=(32,32,3),
out_features=10,
conv_filters=[32,32,64,64],
conv_kernel_size=[3,3,3,3],
conv_strides=[1,1,1,1],
conv_pad=[0,0,0,0],
max_pool_kernels=[None, (2,2), None, (2,2)],
max_pool_strides=[None,2,None,2],
use_dropout=False,
use_batch_norm=True, #False
actv_func=["relu", "relu", "relu", "relu"],
device=device
)
return cnn
model = GetCNN()
# Display model specifications
summary(model, (3,32,32))
# Send model to GPU
model.to(device)
# Specify optimizer
opt = optim.Adam(model.parameters(), lr=0.0005, betas=(0.9, 0.95))
# Specify loss function
cost = nn.CrossEntropyLoss()
# Train the model
trainer = Trainer(device=device, name="Basic_CNN")
epochs = 5
trainer.Train(model, trainloader, testloader, cost=cost, opt=opt, epochs=epochs)
# Load best saved model for inference
model_loaded = GetCNN()
# Specify location of saved model
PATH = "./save/Basic_CNN-best-model/model.pt"
checkpoint = torch.load(PATH)
# load the saved model
model_loaded.load_state_dict(checkpoint['state_dict'])
# intialization for hooks and storing activation of ReLU layers
activation = {}
hooks = []
# Hook function saves activation of a particular layer
def hook_fn(model, input, output, name):
activation[name] = output.cpu().detach().numpy()
# Registering hooks
count =0
conv_count = 0
for name, layer in model_loaded.named_modules():
if isinstance(layer, nn.ReLU):
count +=1
hook = layer.register_forward_hook(partial(hook_fn, name=f"{layer._get_name()}-{count}")) #f"{type(layer).__name__}-{name}"
hooks.append(hook)
if isinstance(layer, nn.Conv2d):
conv_count += 1
# Displaying image used for inference
data, _ = trainset[15]
imshow(data)
# Infering model to save activation of ReLU layers
output = model_loaded(data[None].to(device))
# Removing hooks
for hook in hooks:
hook.remove()
# Function to display output of a particular ReLU layer
def output_one_layer(layer_num):
assert 1 <= layer_num <= len(activation), "Wrong layer number"
layer_name = f"ReLu-{layer_num}"
act = activation[f"ReLU-{layer_num}"]
if act.shape[1]==32:
rows = 4
columns = 8
elif act.shape[1]==64:
rows = 8
columns = 8
fig = plt.figure(figsize=(rows, columns))
for idx in range(1, columns * rows + 1):
fig.add_subplot(rows, columns, idx)
plt.imshow(sobel(act[0][idx-1]), cmap=plt.cm.gray)
# try different filters
# plt.imshow(act[0][idx-1], cmap='viridis', vmin=0, vmax=act.max())
# plt.imshow(act[0][idx - 1], cmap='hot')
# plt.imshow(roberts(act[0][idx - 1]), cmap=plt.cm.gray)
# plt.imshow(sobel_h(act[0][idx-1]), cmap=plt.cm.gray)
plt.axis('off')
plt.tight_layout()
plt.show()
# Function to display output of all ReLU layer after Convulution layers
def output_all_layers():
for [name, output], count in zip(activation.items(), range(conv_count)):
if output.shape[1] == 32:
_, axs = plt.subplots(8, 4, figsize=(8, 4))
elif output.shape[1] == 64:
_, axs = plt.subplots(8, 8, figsize=(8, 8))
for ax, out in zip(np.ravel(axs), output[0]):
ax.imshow(sobel(out), cmap=plt.cm.gray)
ax.axis('off')
plt.suptitle(name)
plt.tight_layout()
plt.show()
# Choose either one to display
output_one_layer(layer_num=3) # choose layer number
output_all_layers()