mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 02:39:16 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			262 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content="A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE)."/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="Generalized Advantage Estimation (GAE)"/>
 | |
|     <meta name="twitter:description" content="A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE)."/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/rl/ppo/gae.html"/>
 | |
|     <meta property="og:title" content="Generalized Advantage Estimation (GAE)"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="Generalized Advantage Estimation (GAE)"/>
 | |
|     <meta property="og:description" content="A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE)."/>
 | |
| 
 | |
|     <title>Generalized Advantage Estimation (GAE)</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/rl/ppo/gae.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="../index.html">rl</a>
 | |
|                 <a class="parent" href="index.html">ppo</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/rl/ppo/gae.py">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1>Generalized Advantage Estimation (GAE)</h1>
 | |
| <p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of paper
 | |
| <a href="https://arxiv.org/abs/1506.02438">Generalized Advantage Estimation</a>.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">13</span><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-1'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-1'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">16</span><span class="k">class</span> <span class="nc">GAE</span><span class="p">:</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-2'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-2'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">17</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_workers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">worker_steps</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">gamma</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">lambda_</span><span class="p">:</span> <span class="nb">float</span><span class="p">):</span>
 | |
| <span class="lineno">18</span>        <span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">=</span> <span class="n">lambda_</span>
 | |
| <span class="lineno">19</span>        <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">gamma</span>
 | |
| <span class="lineno">20</span>        <span class="bp">self</span><span class="o">.</span><span class="n">worker_steps</span> <span class="o">=</span> <span class="n">worker_steps</span>
 | |
| <span class="lineno">21</span>        <span class="bp">self</span><span class="o">.</span><span class="n">n_workers</span> <span class="o">=</span> <span class="n">n_workers</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-3'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-3'>#</a>
 | |
|                 </div>
 | |
|                 <h3>Calculate advantages</h3>
 | |
| <p>
 | |
| <script type="math/tex; mode=display">\begin{align}
 | |
| \hat{A_t^{(1)}} &= r_t + \gamma V(s_{t+1}) - V(s)
 | |
| \\
 | |
| \hat{A_t^{(2)}} &= r_t + \gamma r_{t+1} +\gamma^2 V(s_{t+2}) - V(s)
 | |
| \\
 | |
| ...
 | |
| \\
 | |
| \hat{A_t^{(\infty)}} &= r_t + \gamma r_{t+1} +\gamma^2 r_{t+1} + ... - V(s)
 | |
| \end{align}</script>
 | |
| </p>
 | |
| <p>$\hat{A_t^{(1)}}$ is high bias, low variance, whilst
 | |
| $\hat{A_t^{(\infty)}}$ is unbiased, high variance.</p>
 | |
| <p>We take a weighted average of $\hat{A_t^{(k)}}$ to balance bias and variance.
 | |
| This is called Generalized Advantage Estimation.
 | |
| <script type="math/tex; mode=display">\hat{A_t} = \hat{A_t^{GAE}} = \sum_k w_k \hat{A_t^{(k)}}</script>
 | |
| We set $w_k = \lambda^{k-1}$, this gives clean calculation for
 | |
| $\hat{A_t}$</p>
 | |
| <p>
 | |
| <script type="math/tex; mode=display">\begin{align}
 | |
| \delta_t &= r_t + \gamma V(s_{t+1}) - V(s_t)$
 | |
| \\
 | |
| \hat{A_t} &= \delta_t + \gamma \lambda \delta_{t+1} + ... +
 | |
|                      (\gamma \lambda)^{T - t + 1} \delta_{T - 1}$
 | |
| \\
 | |
| &= \delta_t + \gamma \lambda \hat{A_{t+1}}
 | |
| \end{align}</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">23</span>    <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">done</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">rewards</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">values</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-></span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-4'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-4'>#</a>
 | |
|                 </div>
 | |
|                 <p>advantages table</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">56</span>        <span class="n">advantages</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">n_workers</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">worker_steps</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
 | |
| <span class="lineno">57</span>        <span class="n">last_advantage</span> <span class="o">=</span> <span class="mi">0</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-5'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-5'>#</a>
 | |
|                 </div>
 | |
|                 <p>$V(s_{t+1})$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">60</span>        <span class="n">last_value</span> <span class="o">=</span> <span class="n">values</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span>
 | |
| <span class="lineno">61</span>
 | |
| <span class="lineno">62</span>        <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">reversed</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">worker_steps</span><span class="p">)):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-6'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-6'>#</a>
 | |
|                 </div>
 | |
|                 <p>mask if episode completed after step $t$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">64</span>            <span class="n">mask</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="n">done</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span>
 | |
| <span class="lineno">65</span>            <span class="n">last_value</span> <span class="o">=</span> <span class="n">last_value</span> <span class="o">*</span> <span class="n">mask</span>
 | |
| <span class="lineno">66</span>            <span class="n">last_advantage</span> <span class="o">=</span> <span class="n">last_advantage</span> <span class="o">*</span> <span class="n">mask</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-7'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-7'>#</a>
 | |
|                 </div>
 | |
|                 <p>$\delta_t$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">68</span>            <span class="n">delta</span> <span class="o">=</span> <span class="n">rewards</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="n">last_value</span> <span class="o">-</span> <span class="n">values</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-8'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-8'>#</a>
 | |
|                 </div>
 | |
|                 <p>$\hat{A_t} = \delta_t + \gamma \lambda \hat{A_{t+1}}$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">71</span>            <span class="n">last_advantage</span> <span class="o">=</span> <span class="n">delta</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">last_advantage</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-9'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-9'>#</a>
 | |
|                 </div>
 | |
|                 <p>note that we are collecting in reverse order.
 | |
| <em>My initial code was appending to a list and
 | |
|   I forgot to reverse it later.
 | |
| It took me around 4 to 5 hours to find the bug.
 | |
| The performance of the model was improving
 | |
|  slightly during initial runs,
 | |
|  probably because the samples are similar.</em></p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">80</span>            <span class="n">advantages</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">last_advantage</span>
 | |
| <span class="lineno">81</span>
 | |
| <span class="lineno">82</span>            <span class="n">last_value</span> <span class="o">=</span> <span class="n">values</span><span class="p">[:,</span> <span class="n">t</span><span class="p">]</span>
 | |
| <span class="lineno">83</span>
 | |
| <span class="lineno">84</span>        <span class="k">return</span> <span class="n">advantages</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
