Files
Varuna Jayasiri 6924f4580c lab_helpers
2020-09-01 08:05:08 +05:30

48 lines
1.4 KiB
Python

import math
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from labml_helpers.module import Module
class PositionalEncoding(Module):
def __init__(self, d_model: int, dropout_prob: float, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(dropout_prob)
self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))
def __call__(self, x: torch.Tensor):
pe = self.positional_encodings[:x.shape[0]].detach().requires_grad_(False)
x = x + pe
x = self.dropout(x)
return x
def get_positional_encoding(d_model: int, max_len: int = 5000):
encodings = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
two_i = torch.arange(0, d_model, 2, dtype=torch.float32)
div_term = torch.exp(two_i * -(math.log(10000.0) / d_model))
encodings[:, 0::2] = torch.sin(position * div_term)
encodings[:, 1::2] = torch.cos(position * div_term)
encodings = encodings.unsqueeze(1).requires_grad_(False)
return encodings
def _test_positional_encoding():
plt.figure(figsize=(15, 5))
pe = get_positional_encoding(20, 100)
plt.plot(np.arange(100), pe[:, 0, 4:8].numpy())
plt.legend(["dim %d" % p for p in [4, 5, 6, 7]])
plt.title("Positional encoding")
plt.show()
if __name__ == '__main__':
_test_positional_encoding()