mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
129 lines
5.8 KiB
HTML
129 lines
5.8 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
|
<meta name="description" content=""/>
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta name="twitter:title" content="Denoising Diffusion Probabilistic Models (DDPM)"/>
|
|
<meta name="twitter:description" content=""/>
|
|
<meta name="twitter:site" content="@labmlai"/>
|
|
<meta name="twitter:creator" content="@labmlai"/>
|
|
|
|
<meta property="og:url" content="https://nn.labml.ai/diffusion/ddpm/readme.html"/>
|
|
<meta property="og:title" content="Denoising Diffusion Probabilistic Models (DDPM)"/>
|
|
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta property="og:site_name" content="Denoising Diffusion Probabilistic Models (DDPM)"/>
|
|
<meta property="og:type" content="object"/>
|
|
<meta property="og:title" content="Denoising Diffusion Probabilistic Models (DDPM)"/>
|
|
<meta property="og:description" content=""/>
|
|
|
|
<title>Denoising Diffusion Probabilistic Models (DDPM)</title>
|
|
<link rel="shortcut icon" href="/icon.png"/>
|
|
<link rel="stylesheet" href="../../pylit.css?v=1">
|
|
<link rel="canonical" href="https://nn.labml.ai/diffusion/ddpm/readme.html"/>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
|
|
|
|
<!-- Global site tag (gtag.js) - Google Analytics -->
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
|
|
function gtag() {
|
|
dataLayer.push(arguments);
|
|
}
|
|
|
|
gtag('js', new Date());
|
|
|
|
gtag('config', 'G-4V3HC8HBLH');
|
|
</script>
|
|
</head>
|
|
<body>
|
|
<div id='container'>
|
|
<div id="background"></div>
|
|
<div class='section'>
|
|
<div class='docs'>
|
|
<p>
|
|
<a class="parent" href="/">home</a>
|
|
<a class="parent" href="../index.html">diffusion</a>
|
|
<a class="parent" href="index.html">ddpm</a>
|
|
</p>
|
|
<p>
|
|
|
|
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/diffusion/ddpm/readme.md">
|
|
<img alt="Github"
|
|
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://twitter.com/labmlai"
|
|
rel="nofollow">
|
|
<img alt="Twitter"
|
|
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
|
style="max-width:100%;"/></a>
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-0'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-0'>#</a>
|
|
</div>
|
|
<h1><a href="https://nn.labml.ai/diffusion/ddpm/index.html">Denoising Diffusion Probabilistic Models (DDPM)</a></h1>
|
|
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a> <a href="https://www.comet.com/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels?utm_source=referral&utm_medium=partner&utm_campaign=labml"><img alt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
|
|
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation/tutorial of the paper <a href="https://papers.labml.ai/paper/2006.11239">Denoising Diffusion Probabilistic Models</a>.</p>
|
|
<p>In simple terms, we get an image from data and add noise step by step. Then We train a model to predict that noise at each step and use the model to generate images.</p>
|
|
<p>Here is the <a href="https://nn.labml.ai/diffusion/ddpm/unet.html">UNet model</a> that predicts the noise and <a href="https://nn.labml.ai/diffusion/ddpm/experiment.html">training code</a>. <a href="https://nn.labml.ai/diffusion/ddpm/evaluate.html">This file</a> can generate samples and interpolations from a trained model. </p>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
|
|
</div>
|
|
</div>
|
|
<div class='footer'>
|
|
<a href="https://papers.labml.ai">Trending Research Papers</a>
|
|
<a href="https://labml.ai">labml.ai</a>
|
|
</div>
|
|
</div>
|
|
<script src=../../interactive.js?v=1"></script>
|
|
<script>
|
|
function handleImages() {
|
|
var images = document.querySelectorAll('p>img')
|
|
|
|
for (var i = 0; i < images.length; ++i) {
|
|
handleImage(images[i])
|
|
}
|
|
}
|
|
|
|
function handleImage(img) {
|
|
img.parentElement.style.textAlign = 'center'
|
|
|
|
var modal = document.createElement('div')
|
|
modal.id = 'modal'
|
|
|
|
var modalContent = document.createElement('div')
|
|
modal.appendChild(modalContent)
|
|
|
|
var modalImage = document.createElement('img')
|
|
modalContent.appendChild(modalImage)
|
|
|
|
var span = document.createElement('span')
|
|
span.classList.add('close')
|
|
span.textContent = 'x'
|
|
modal.appendChild(span)
|
|
|
|
img.onclick = function () {
|
|
console.log('clicked')
|
|
document.body.appendChild(modal)
|
|
modalImage.src = img.src
|
|
}
|
|
|
|
span.onclick = function () {
|
|
document.body.removeChild(modal)
|
|
}
|
|
}
|
|
|
|
handleImages()
|
|
</script>
|
|
</body>
|
|
</html> |