Files
annotated_deep_learning_pap…/docs/cnn/cross_validation.html
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

286 lines
17 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="cross_validation.py"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/cnn/cross_validation.html"/>
<meta property="og:title" content="cross_validation.py"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="cross_validation.py"/>
<meta property="og:description" content=""/>
<title>cross_validation.py</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/cnn/cross_validation.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">cnn</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/cnn/cross_validation.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">2</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">3</span><span class="kn">import</span> <span class="nn">torchvision</span>
<span class="lineno">4</span><span class="kn">import</span> <span class="nn">torchvision.transforms</span> <span class="k">as</span> <span class="nn">transforms</span>
<span class="lineno">5</span><span class="kn">from</span> <span class="nn">torch.utils.data.sampler</span> <span class="kn">import</span> <span class="n">SubsetRandomSampler</span>
<span class="lineno">6</span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="lineno">7</span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="lineno">8</span><span class="kn">import</span> <span class="nn">torch.optim</span> <span class="k">as</span> <span class="nn">optim</span>
<span class="lineno">9</span><span class="kn">from</span> <span class="nn">torchsummary</span> <span class="kn">import</span> <span class="n">summary</span>
<span class="lineno">10</span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p>from models.mlp import MLP
from utils.utils import *
from utils.train_dataset import *
from nutsflow import Take, Consume
from nutsml import *</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">17</span><span class="kn">from</span> <span class="nn">utils.dataloader</span> <span class="kn">import</span> <span class="o">*</span>
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">models.cnn</span> <span class="kn">import</span> <span class="n">CNN</span>
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">utils.train</span> <span class="kn">import</span> <span class="n">Trainer</span>
<span class="lineno">20</span>
<span class="lineno">21</span><span class="kn">from</span> <span class="nn">utils.cv_train</span> <span class="kn">import</span> <span class="o">*</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Check if GPU is available</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">24</span><span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">&quot;cuda:0&quot;</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s2">&quot;cpu&quot;</span><span class="p">)</span>
<span class="lineno">25</span><span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Device: &quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">device</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Cifar 10 Datasets location</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">28</span><span class="n">save</span><span class="o">=</span><span class="s1">&#39;./data/Cifar10&#39;</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Transformations train</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">31</span><span class="n">transform_train</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">(</span>
<span class="lineno">32</span> <span class="p">[</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="lineno">33</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Load train dataset and dataloader</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">36</span><span class="n">trainset</span> <span class="o">=</span> <span class="n">LoadCifar10DatasetTrain</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform_train</span><span class="p">)</span>
<span class="lineno">37</span><span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="lineno">38</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Transformations test (for inference later)</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">41</span><span class="n">transform_test</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">(</span>
<span class="lineno">42</span> <span class="p">[</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="lineno">43</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Load test dataset and dataloader (for inference later)</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">46</span><span class="n">testset</span> <span class="o">=</span> <span class="n">LoadCifar10DatasetTest</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform_test</span><span class="p">)</span>
<span class="lineno">47</span><span class="n">testloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">testset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="lineno">48</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Specify loss function</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">51</span><span class="n">cost</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">()</span>
<span class="lineno">52</span>
<span class="lineno">53</span><span class="n">epochs</span><span class="o">=</span><span class="mi">25</span> <span class="c1">#10</span>
<span class="lineno">54</span><span class="n">splits</span> <span class="o">=</span> <span class="mi">4</span> <span class="c1">#5</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Training - Cross-validation</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">57</span><span class="n">history</span> <span class="o">=</span> <span class="n">cross_val_train</span><span class="p">(</span><span class="n">cost</span><span class="p">,</span> <span class="n">trainset</span><span class="p">,</span> <span class="n">epochs</span><span class="p">,</span> <span class="n">splits</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Inference</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">60</span><span class="n">best_model</span><span class="p">,</span> <span class="n">best_val_accuracy</span> <span class="o">=</span> <span class="n">retreive_best_trial</span><span class="p">()</span>
<span class="lineno">61</span><span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Best Validation Accuracy = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="p">(</span><span class="n">best_val_accuracy</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Testing</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">64</span><span class="n">accuracy</span> <span class="o">=</span> <span class="n">Test</span><span class="p">(</span><span class="n">best_model</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span> <span class="n">testloader</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="lineno">65</span><span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Test Accuracy = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="p">(</span><span class="n">accuracy</span><span class="p">[</span><span class="s1">&#39;val_acc&#39;</span><span class="p">]))</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>