mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 02:39:16 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			182 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content=""/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="LabML Neural Networks"/>
 | |
|     <meta name="twitter:description" content=""/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/index.html"/>
 | |
|     <meta property="og:title" content="LabML Neural Networks"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="LabML Neural Networks"/>
 | |
|     <meta property="og:description" content=""/>
 | |
| 
 | |
|     <title>LabML Neural Networks</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="./pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/index.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/__init__.py">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1><a href="index.html">LabML Neural Networks</a></h1>
 | |
| <p>This is a collection of simple PyTorch implementations of
 | |
| neural networks and related algorithms.
 | |
| <a href="https://github.com/lab-ml/nn">These implementations</a> are documented with explanations,
 | |
| and the <a href="index.html">website</a>
 | |
| renders these as side-by-side formatted notes.
 | |
| We believe these would help you understand these algorithms better.</p>
 | |
| <p>We are actively maintaining this repo and adding new
 | |
| implementations.</p>
 | |
| <h2>Modules</h2>
 | |
| <h4>✨ <a href="transformers/index.html">Transformers</a></h4>
 | |
| <ul>
 | |
| <li><a href="transformers/mha.html">Multi-headed attention</a></li>
 | |
| <li><a href="transformers/models.html">Transformer building blocks</a></li>
 | |
| <li><a href="transformers/xl/index.html">Transformer XL</a><ul>
 | |
| <li><a href="transformers/xl/relative_mha.html">Relative multi-headed attention</a></li>
 | |
| </ul>
 | |
| </li>
 | |
| <li><a href="transformers/gpt/index.html">GPT Architecture</a></li>
 | |
| <li><a href="transformers/glu_variants/simple.html">GLU Variants</a></li>
 | |
| <li><a href="transformers/knn/index.html">kNN-LM: Generalization through Memorization</a></li>
 | |
| <li><a href="transformers/feedback/index.html">Feedback Transformer</a></li>
 | |
| <li><a href="transformers/switch/index.html">Switch Transformer</a></li>
 | |
| </ul>
 | |
| <h4>✨ <a href="recurrent_highway_networks/index.html">Recurrent Highway Networks</a></h4>
 | |
| <h4>✨ <a href="lstm/index.html">LSTM</a></h4>
 | |
| <h4>✨ <a href="hypernetworks/hyper_lstm.html">HyperNetworks - HyperLSTM</a></h4>
 | |
| <h4>✨ <a href="capsule_networks/index.html">Capsule Networks</a></h4>
 | |
| <h4>✨ <a href="gan/index.html">Generative Adversarial Networks</a></h4>
 | |
| <ul>
 | |
| <li><a href="gan/simple_mnist_experiment.html">GAN with a multi-layer perceptron</a></li>
 | |
| <li><a href="gan/dcgan.html">GAN with deep convolutional network</a></li>
 | |
| <li><a href="gan/cycle_gan.html">Cycle GAN</a></li>
 | |
| </ul>
 | |
| <h4>✨ <a href="sketch_rnn/index.html">Sketch RNN</a></h4>
 | |
| <h4>✨ <a href="rl/index.html">Reinforcement Learning</a></h4>
 | |
| <ul>
 | |
| <li><a href="rl/ppo/index.html">Proximal Policy Optimization</a> with
 | |
|  <a href="rl/ppo/gae.html">Generalized Advantage Estimation</a></li>
 | |
| <li><a href="rl/dqn/index.html">Deep Q Networks</a> with
 | |
|  with <a href="rl/dqn/model.html">Dueling Network</a>,
 | |
|  <a href="rl/dqn/replay_buffer.html">Prioritized Replay</a>
 | |
|  and Double Q Network.</li>
 | |
| </ul>
 | |
| <h4>✨ <a href="optimizers/index.html">Optimizers</a></h4>
 | |
| <ul>
 | |
| <li><a href="optimizers/adam.html">Adam</a></li>
 | |
| <li><a href="optimizers/amsgrad.html">AMSGrad</a></li>
 | |
| <li><a href="optimizers/adam_warmup.html">Adam Optimizer with warmup</a></li>
 | |
| <li><a href="optimizers/noam.html">Noam Optimizer</a></li>
 | |
| <li><a href="optimizers/radam.html">Rectified Adam Optimizer</a></li>
 | |
| <li><a href="optimizers/ada_belief.html">AdaBelief Optimizer</a></li>
 | |
| </ul>
 | |
| <h4>✨ <a href="https://nn.labml.ai/normalization/index.html">Normalization Layers</a></h4>
 | |
| <ul>
 | |
| <li><a href="https://nn.labml.ai/normalization/batch_norm/index.html">Batch Normalization</a></li>
 | |
| <li><a href="https://nn.labml.ai/normalization/layer_norm/index.html">Layer Normalization</a></li>
 | |
| </ul>
 | |
| <h3>Installation</h3>
 | |
| <pre><code class="bash">pip install labml-nn
 | |
| </code></pre>
 | |
| 
 | |
| <h3>Citing LabML</h3>
 | |
| <p>If you use LabML for academic research, please cite the library using the following BibTeX entry.</p>
 | |
| <pre><code class="bibtex">@misc{labml,
 | |
|  author = {Varuna Jayasiri, Nipun Wijerathne},
 | |
|  title = {LabML: A library to organize machine learning experiments},
 | |
|  year = {2020},
 | |
|  url = {https://lab-ml.com/},
 | |
| }
 | |
| </code></pre>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
