mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-01 03:43:09 +08:00 
			
		
		
		
	<!DOCTYPE html>
<html lang="zh">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>
    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
    <meta name="twitter:title" content="Graph 注意力网络 v2 (GATv2)"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>
    <meta property="og:url" content="https://nn.labml.ai/graphs/gatv2/readme.html"/>
    <meta property="og:title" content="Graph 注意力网络 v2 (GATv2)"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
    <meta property="og:site_name" content="Graph 注意力网络 v2 (GATv2)"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="Graph 注意力网络 v2 (GATv2)"/>
    <meta property="og:description" content=""/>
    <title>Graph 注意力网络 v2 (GATv2)</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../../pylit.css?v=1">
    <link rel="canonical" href="https://nn.labml.ai/graphs/gatv2/readme.html"/>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];
        function gtag() {
            dataLayer.push(arguments);
        }
        gtag('js', new Date());
        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="../index.html">graphs</a>
                <a class="parent" href="index.html">gatv2</a>
            </p>
            <p>
                <a href="https://github.com/sponsors/labmlai" target="_blank">
                    <img alt="Sponsor"
                         src="https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86"
                         style="max-width:100%;"/></a>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/graphs/gatv2/readme.md" target="_blank">
                    View code on Github</a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
        <div class='docs'>
            <div class='section-link'>
                <a href='#section-0'>#</a>
            </div>
            <h1><a href="https://nn.labml.ai/graphs/gatv2/index.html">Graph 注意力网络 v2 (GATv2)</a></h1>
<p>这是 Gatv2 运营商的 <a href="https://pytorch.org">PyTorch</a> 实现,来自论文 G <a href="https://papers.labml.ai/paper/2105.14491">raph 注意力网络有多专心?</a>。</p>
<p>GATV2 处理图形数据。图由连接节点的节点和边组成。例如,在 Cora 数据集中,节点是研究论文,边缘是连接论文的引文。</p>
G@@ <p>ATv2 运算符修复了标准 GAT 的静态注意力问题:由于标准 GAT 中的线性层紧随其后应用,因此参与节点的排名在查询节点上是无条件的。相比之下,在 GATv2 中,每个节点都可以参与任何其他节点。</p>
<p>以下是<a href="https://nn.labml.ai/graphs/gatv2/experiment.html">在 Cora 数据集上训练双层 GATv2 的训练代码</a>。</p>
<p><a href="https://app.labml.ai/run/34b1e2f6ed6f11ebb860997901a2d1e3"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a></p>
        </div>
        <div class='code'>
            
        </div>
    </div>
    <div class='footer'>
        <a href="https://papers.labml.ai">Trending Research Papers</a>
        <a href="https://labml.ai">labml.ai</a>
    </div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')
        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }
    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'
        var modal = document.createElement('div')
        modal.id = 'modal'
        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)
        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)
        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)
        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }
        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }
    handleImages()
</script>
</body>
</html>
			
		