mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 02:39:16 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			160 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| ---
 | |
| title: AdaBelief optimizer
 | |
| summary: A simple PyTorch implementation/tutorial of AdaBelief optimizer.
 | |
| ---
 | |
| 
 | |
| # AdaBelief Optimizer
 | |
| 
 | |
| This is based from AdaBelief
 | |
| [official implementation](https://github.com/juntang-zhuang/Adabelief-Optimizer)
 | |
| of the paper
 | |
| [AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients](https://arxiv.org/abs/2010.07468).
 | |
| 
 | |
| This is implemented here as an extension to [RAdam](radam.html).
 | |
| 
 | |
| The main difference between Adam optimizer and AdaBelief is that,
 | |
| how it calculates the adaptive learning rate;
 | |
| instead of dividing by the exponential moving average of square of the gradients,
 | |
| AdaBelief divides by the exponential mean of variance.
 | |
| 
 | |
| \begin{align}
 | |
| m_t &\leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t \\
 | |
| \color{cyan}{s_t} &\color{cyan}{\leftarrow} \color{cyan}{\beta_2 s_{t-1} + (1 - \beta_2) \cdot (g_t - m_t)^2} \\
 | |
| \hat{m}_t &\leftarrow \frac{m_t}{1-\beta_1^t} \\
 | |
| \color{cyan}{\hat{s}_t} &\color{cyan}{\leftarrow} \frac{\color{cyan}{s_t} + \color{red}{\epsilon}}{\color{cyan}{1-\beta_2^t}} \\
 | |
| \theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\color{cyan}{\hat{s}_t}} + \epsilon}
 | |
| \end{align}
 | |
| 
 | |
| 🤔 The paper calculates variance as $(g_t - m_t)^2$,
 | |
| but I feel it should use the bias corrected momentum
 | |
| $(g_t - \color{orange}{\hat{m}_t})^2$.
 | |
| I guess this doesn't affect things much because
 | |
| bias correction is $\approx 1$ after the initial training steps.
 | |
| """
 | |
| 
 | |
| from typing import Dict, Any
 | |
| 
 | |
| import torch
 | |
| from torch import nn
 | |
| 
 | |
| from labml_nn.optimizers import WeightDecay
 | |
| from labml_nn.optimizers.radam import RAdam
 | |
| 
 | |
| 
 | |
| class AdaBelief(RAdam):
 | |
|     """
 | |
|     ## AdaBelief Optimizer
 | |
| 
 | |
|     This class extends from RAdam optimizer defined in [`radam.py`](radam.html).
 | |
|     """
 | |
| 
 | |
|     def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
 | |
|                  weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
 | |
|                  degenerated_to_sgd=True,
 | |
|                  rectify=True, defaults=None):
 | |
|         """
 | |
|         ### Initialize the optimizer
 | |
| 
 | |
|         * `params` is the list of parameters
 | |
|         * `lr` is the learning rate $\alpha$
 | |
|         * `betas` is a tuple of ($\beta_1$, $\beta_2$)
 | |
|         * `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
 | |
|         * `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
 | |
|         * 'optimized_update' is a flag whether to optimize the bias correction of the second moment
 | |
|           by doing it after adding $\epsilon$
 | |
|         * `amsgrad` is a flag indicating whether to use AMSGrad or fallback to plain Adam
 | |
|         * `degenerate_to_sgd` whether to use sgd when the rectification term $r_t is intractable
 | |
|         * 'rectify' is whether to use RAdam update
 | |
|         * `defaults` is a dictionary of default for group values.
 | |
|          This is useful when you want to extend the class `AdaBelief`.
 | |
|         """
 | |
| 
 | |
|         defaults = {} if defaults is None else defaults
 | |
|         super().__init__(params, lr, betas, eps, weight_decay, amsgrad, degenerated_to_sgd, defaults)
 | |
|         self.rectify = rectify
 | |
| 
 | |
|     def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
 | |
|         """
 | |
|         ### Initialize a parameter state
 | |
| 
 | |
|         * `state` is the optimizer state of the parameter (tensor)
 | |
|         * `group` stores optimizer attributes of the parameter group
 | |
|         * `param` is the parameter tensor $\theta_{t-1}$
 | |
|         """
 | |
|         state['step'] = 0
 | |
|         # Exponential moving average of gradient values
 | |
|         state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
 | |
|         # Exponential moving average of variance
 | |
|         state['exp_avg_var'] = torch.zeros_like(param, memory_format=torch.preserve_format)
 | |
| 
 | |
|         # If `amsgrad` flag is `True` for this parameter group, we maintain the maximum of
 | |
|         # exponential moving average of variance
 | |
|         if group['amsgrad']:
 | |
|             # Maintains max of all exp. moving avg. of sq. grad. values
 | |
|             state['max_exp_avg_var'] = torch.zeros_like(param, memory_format=torch.preserve_format)
 | |
| 
 | |
|     def get_ms(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
 | |
|         """
 | |
|         ### Calculate $m_t$ and $s_t$ or $\max(s_1, s_2, ..., s_{t-1}, s_t)$
 | |
| 
 | |
|         * `state` is the optimizer state of the parameter (tensor)
 | |
|         * `group` stores optimizer attributes of the parameter group
 | |
|         * `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
 | |
|         """
 | |
| 
 | |
|         # Get $\beta_1$ and $\beta_2$
 | |
|         beta1, beta2 = group['betas']
 | |
| 
 | |
|         # Get $m_{t-1}$ and $s_{t-1}$
 | |
|         m, s = state['exp_avg'], state['exp_avg_var']
 | |
| 
 | |
|         # In-place calculation of $m_t$
 | |
|         # $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
 | |
|         m.mul_(beta1).add_(grad, alpha=1 - beta1)
 | |
|         # Difference between gradient and momentum
 | |
|         grad_residual = grad - m
 | |
|         # In-place calculation of $s_t$
 | |
|         # $$s_t \leftarrow \beta_2 s_{t-1} + (1 - \beta_2) \cdot (g_t - m_t)^2$$
 | |
|         s.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
 | |
| 
 | |
|         # If this parameter group is using `amsgrad`
 | |
|         if group['amsgrad']:
 | |
|             # Get $\max(s_1, s_2, ..., s_{t-1})$.
 | |
|             s_max = state['max_exp_avg_var']
 | |
|             # Calculate $\max(s_1, s_2, ..., s_{t-1}, s_t)$.
 | |
|             torch.maximum(s_max, s, out=s_max)
 | |
| 
 | |
|             return m, s_max
 | |
|         else:
 | |
|             # $m_t$ and $s_t$ otherwise
 | |
|             return m, s
 | |
| 
 | |
|     def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
 | |
|         """
 | |
|         ### Take an update step for a given parameter tensor
 | |
| 
 | |
|         * `state` is the optimizer state of the parameter (tensor)
 | |
|         * `group` stores optimizer attributes of the parameter group
 | |
|         * `grad` is the current gradient tensor  $g_t$ for the parameter $\theta_{t-1}$
 | |
|         * `param` is the parameter tensor $\theta_{t-1}$
 | |
|         """
 | |
| 
 | |
|         # Calculate weight decay
 | |
|         grad = self.weight_decay(param, grad, group)
 | |
| 
 | |
|         # Get $m_t$ and $v_t$
 | |
|         m, s = self.get_ms(state, group, grad)
 | |
| 
 | |
|         # Increment $t$ the number of optimizer steps
 | |
|         state['step'] += 1
 | |
| 
 | |
|         if not self.rectify:
 | |
|             # Perform *Adam* update, defined in [`adam.py`](adam.html), with
 | |
|             # $\color{cyan}{s_t} + \color{red}{\epsilon}$ in place of $v_t$.
 | |
|             self.adam_update(state, group, param, m, s + group['eps'])
 | |
|         else:
 | |
|             # Perform *Rectified Adam* update defined in [`radam.py`](radam.html), with
 | |
|             # $\color{cyan}{s_t} + \color{red}{\epsilon}$ in place of $v_t$.
 | |
|             self.r_adam_update(state, group, param, m, s + group['eps'])
 | 
