mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 10:48:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content=""/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="Feedback Transformer"/>
 | |
|     <meta name="twitter:description" content=""/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/transformers/feedback/README.html"/>
 | |
|     <meta property="og:title" content="Feedback Transformer"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="Feedback Transformer"/>
 | |
|     <meta property="og:description" content=""/>
 | |
| 
 | |
|     <title>Feedback Transformer</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/transformers/feedback/README.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="../index.html">transformers</a>
 | |
|                 <a class="parent" href="index.html">feedback</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/feedback/README.md">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1><a href="https://nn.labml.ai/transformers/feedback/index.html">Feedback Transformer</a></h1>
 | |
| <p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of the paper
 | |
| <a href="https://arxiv.org/abs/2002.09402">Accessing Higher-level Representations in Sequential Transformers with Feedback Memory</a>.</p>
 | |
| <p>Normal transformers process tokens in parallel. Each transformer layer pays attention
 | |
| to the outputs of the previous layer.
 | |
| Feedback transformer pays attention to the output of all layers in previous steps.
 | |
| So this adds recurrence, and we need to process token-by-token.
 | |
| This slows down the training significantly (about 5X - 10X depending on the sequence length).
 | |
| However, when predicting Feedback Transformer is faster because you can predict the next token
 | |
| if you cache the memory vectors.</p>
 | |
| <p>In order to speed up the training the paper discusses starting with a short sequence length and
 | |
| gradually increasing it.
 | |
| They also discuss using a pretrained parallel transformer as the starting point.</p>
 | |
| <p>The original feedback transformer doesn’t keep the outputs of all layers.
 | |
| Instead it keeps weighted sum of the output of all layers.
 | |
| This reduces the memory used for caching during prediction.
 | |
| The first half of this file implements this.</p>
 | |
| <p>The updated feedback transformer shares weights used
 | |
| to calculate keys and values among the layers.
 | |
| We then calculate the keys and values for each step only once and keep
 | |
| them cached.
 | |
| The <a href="#shared_kv">second half</a> of this file implements this.
 | |
| We implemented a custom PyTorch function to improve performance.</p>
 | |
| <p>Here’s <a href="experiment.html">the training code</a> and a notebook for training a feedback transformer on Tiny Shakespeare dataset.</p>
 | |
| <p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/feedback/experiment.ipynb">Colab Notebook</a></p>
 | |
| <p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/feedback/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
 | |
| <a href="https://app.labml.ai/run/d8eb9416530a11eb8fb50242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
