mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 10:48:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content=""/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="Compressive Transformer"/>
 | |
|     <meta name="twitter:description" content=""/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/transformers/compressive/readme.html"/>
 | |
|     <meta property="og:title" content="Compressive Transformer"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="Compressive Transformer"/>
 | |
|     <meta property="og:description" content=""/>
 | |
| 
 | |
|     <title>Compressive Transformer</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/transformers/compressive/readme.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="../index.html">transformers</a>
 | |
|                 <a class="parent" href="index.html">compressive</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/compressive/readme.md">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1><a href="https://nn.labml.ai/transformers/compressive/index.html">Compressive Transformer</a></h1>
 | |
| <p>This is an implementation of
 | |
| <a href="https://arxiv.org/abs/1911.05507">Compressive Transformers for Long-Range Sequence Modelling</a>
 | |
| in <a href="https://pytorch.org">PyTorch</a>.</p>
 | |
| <p>This is an extension of <a href="https://nn.labml.ai/transformers/xl/index.html">Transformer XL</a> where past memories
 | |
| are compressed to give a longer attention range.
 | |
| That is, the furthest $n_{cm} c$ memories are compressed into
 | |
| $n_{cm}$ memories, where $c$ is the compression rate.</p>
 | |
| <h2>Compression operation</h2>
 | |
| <p>The compression operation is defined as
 | |
| $f_c: \mathbb{R}^{nc \times d} \rightarrow \mathbb{R}^{n \times d}$.
 | |
| The paper introduces multiple choices for $f_c$ and we have only implemented
 | |
| 1D convolution which seems to give the best results.
 | |
| Each layer has a separate compression operation $f_c^{(i)}$ where
 | |
| $i$ is the layer number.</p>
 | |
| <h2>Training compression operation</h2>
 | |
| <p>Since training compression with BPTT requires maintaining
 | |
| a very large computational graph (many time steps), the paper proposes
 | |
| an <em>auto-encoding loss</em> and an <em>attention reconstruction loss</em>.
 | |
| The auto-encoding loss decodes the original memories from the compressed memories
 | |
| and calculates the loss.
 | |
| Attention reconstruction loss computes the multi-headed attention results
 | |
| on the compressed memory and on uncompressed memory and gets a mean squared error
 | |
| between them.
 | |
| We have implemented the latter here since it gives better results.</p>
 | |
| <p>This implementation uses pre-layer normalization
 | |
| while the paper uses post-layer normalization.
 | |
| Pre-layer norm does the layer norm before FFN[../feedforward.html) and
 | |
| self-attention, and the pass-through in the residual connection is not normalized.
 | |
| This is supposed to be more stable in standard transformer setups.</p>
 | |
| <p>Here are <a href="https://nn.labml.ai/transformers/compressive/experiment.html">the training code</a> and a notebook for training a compressive transformer
 | |
| model on the Tiny Shakespeare dataset.</p>
 | |
| <p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/compressive/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
 | |
| <a href="https://app.labml.ai/run/0d9b5338726c11ebb7c80242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
