mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 10:48:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			271 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			271 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content=""/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="resnet_net.py"/>
 | |
|     <meta name="twitter:description" content=""/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/resnets/resnet_net.html"/>
 | |
|     <meta property="og:title" content="resnet_net.py"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="resnet_net.py"/>
 | |
|     <meta property="og:description" content=""/>
 | |
| 
 | |
|     <title>resnet_net.py</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/resnets/resnet_net.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="index.html">resnets</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/resnets/resnet_net.py">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <p>Custom classes</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">4</span><span></span><span class="kn">from</span> <span class="nn">models.mlp</span> <span class="kn">import</span> <span class="n">MLP</span>
 | |
| <span class="lineno">5</span><span class="kn">from</span> <span class="nn">utils.train</span> <span class="kn">import</span> <span class="n">Trainer</span>
 | |
| <span class="lineno">6</span><span class="kn">from</span> <span class="nn">models.resnet</span> <span class="kn">import</span> <span class="o">*</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-1'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-1'>#</a>
 | |
|                 </div>
 | |
|                 <p>GPU Check</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">9</span><span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">"cuda:0"</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s2">"cpu"</span><span class="p">)</span>
 | |
| <span class="lineno">10</span><span class="nb">print</span><span class="p">(</span><span class="s2">"Device:  "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">device</span><span class="p">))</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-2'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-2'>#</a>
 | |
|                 </div>
 | |
|                 <p>Use different train/test data augmentations</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">13</span><span class="n">transform_test</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">(</span>
 | |
| <span class="lineno">14</span>        <span class="p">[</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
 | |
| <span class="lineno">15</span>         <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span>
 | |
| <span class="lineno">16</span>
 | |
| <span class="lineno">17</span><span class="n">transform_train</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
 | |
| <span class="lineno">18</span>        <span class="n">transforms</span><span class="o">.</span><span class="n">RandomHorizontalFlip</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">1.0</span><span class="p">),</span>
 | |
| <span class="lineno">19</span>        <span class="n">transforms</span><span class="o">.</span><span class="n">RandomRotation</span><span class="p">(</span><span class="mi">20</span><span class="p">),</span>
 | |
| <span class="lineno">20</span>        <span class="n">transforms</span><span class="o">.</span><span class="n">RandomCrop</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">pad_if_needed</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">padding_mode</span><span class="o">=</span><span class="s1">'constant'</span><span class="p">),</span>
 | |
| <span class="lineno">21</span>        <span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
 | |
| <span class="lineno">22</span>        <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-3'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-3'>#</a>
 | |
|                 </div>
 | |
|                 <p>Get Cifar 10 Datasets</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">26</span><span class="n">save</span><span class="o">=</span><span class="s1">'./data/Cifar10'</span>
 | |
| <span class="lineno">27</span><span class="n">trainset</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">CIFAR10</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="n">save</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">download</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="n">transform_train</span><span class="p">)</span>
 | |
| <span class="lineno">28</span><span class="n">testset</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">CIFAR10</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="n">save</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">download</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="n">transform_test</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-4'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-4'>#</a>
 | |
|                 </div>
 | |
|                 <p>Get Cifar 10 Dataloaders</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">31</span><span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
 | |
| <span class="lineno">32</span>                                          <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
 | |
| <span class="lineno">33</span>
 | |
| <span class="lineno">34</span><span class="n">testloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">testset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> 
 | |
| <span class="lineno">35</span>                                         <span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
 | |
| <span class="lineno">36</span>
 | |
| <span class="lineno">37</span><span class="n">epochs</span> <span class="o">=</span> <span class="mi">50</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-5'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-5'>#</a>
 | |
|                 </div>
 | |
|                 <h6></h6>
 | |
| <p>Create the assignment Resnet (part a)</p>
 | |
| <h6></h6>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">42</span><span class="k">def</span> <span class="nf">MyResNet</span><span class="p">():</span>
 | |
| <span class="lineno">43</span>    <span class="n">resnet</span> <span class="o">=</span> <span class="n">ResNet</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span> <span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
 | |
| <span class="lineno">44</span>                    <span class="n">num_class</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
 | |
| <span class="lineno">45</span>                    <span class="n">feature_channel_list</span> <span class="o">=</span> <span class="p">[</span><span class="mi">128</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">512</span><span class="p">],</span>
 | |
| <span class="lineno">46</span>                    <span class="n">batch_norm</span><span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
 | |
| <span class="lineno">47</span>                    <span class="n">num_stacks</span><span class="o">=</span><span class="mi">1</span>
 | |
| <span class="lineno">48</span>                    <span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-6'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-6'>#</a>
 | |
|                 </div>
 | |
|                 <p>Create MLP
 | |
| Calculate the input shape</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">52</span>    <span class="n">s</span> <span class="o">=</span> <span class="n">resnet</span><span class="o">.</span><span class="n">GetCurShape</span><span class="p">()</span>
 | |
| <span class="lineno">53</span>    <span class="n">in_features</span> <span class="o">=</span> <span class="n">s</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">s</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">s</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
 | |
| <span class="lineno">54</span>
 | |
| <span class="lineno">55</span>    <span class="n">mlp</span> <span class="o">=</span> <span class="n">MLP</span><span class="p">(</span><span class="n">in_features</span><span class="p">,</span>
 | |
| <span class="lineno">56</span>                 <span class="mi">10</span><span class="p">,</span>
 | |
| <span class="lineno">57</span>                 <span class="p">[],</span> <span class="c1">#512, 1024, 512</span>
 | |
| <span class="lineno">58</span>                 <span class="p">[],</span>
 | |
| <span class="lineno">59</span>                 <span class="n">use_batch_norm</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
 | |
| <span class="lineno">60</span>                 <span class="n">use_dropout</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
 | |
| <span class="lineno">61</span>                 <span class="n">use_softmax</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
 | |
| <span class="lineno">62</span>                 <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
 | |
| <span class="lineno">63</span>
 | |
| <span class="lineno">64</span>    <span class="n">resnet</span><span class="o">.</span><span class="n">AddMLP</span><span class="p">(</span><span class="n">mlp</span><span class="p">)</span>
 | |
| <span class="lineno">65</span>    <span class="k">return</span> <span class="n">resnet</span>
 | |
| <span class="lineno">66</span>
 | |
| <span class="lineno">67</span><span class="n">model</span> <span class="o">=</span> <span class="n">MyResNet</span><span class="p">()</span>
 | |
| <span class="lineno">68</span><span class="n">model</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
 | |
| <span class="lineno">69</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span><span class="mi">32</span><span class="p">))</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-7'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-7'>#</a>
 | |
|                 </div>
 | |
|                 <p>Optimizer</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">72</span><span class="n">opt</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.0005</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">),</span> <span class="n">weight_decay</span><span class="o">=</span><span class="mf">1e-8</span><span class="p">)</span> <span class="c1">#0.0005 l2_factor.item()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-8'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-8'>#</a>
 | |
|                 </div>
 | |
|                 <p>Loss function</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">75</span><span class="n">cost</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-9'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-9'>#</a>
 | |
|                 </div>
 | |
|                 <p>Create a trainer</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">78</span><span class="n">trainer</span> <span class="o">=</span> <span class="n">Trainer</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">opt</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">"MyResNet"</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">use_lr_schedule</span> <span class="o">=</span><span class="kc">True</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-10'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-10'>#</a>
 | |
|                 </div>
 | |
|                 <p>Run training</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">81</span><span class="n">trainer</span><span class="o">.</span><span class="n">Train</span><span class="p">(</span><span class="n">trainloader</span><span class="p">,</span> <span class="n">epochs</span><span class="p">,</span> <span class="n">testloader</span><span class="o">=</span><span class="n">testloader</span><span class="p">)</span>
 | |
| <span class="lineno">82</span>
 | |
| <span class="lineno">83</span><span class="nb">print</span><span class="p">(</span><span class="s1">'done'</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
