Files
Varuna Jayasiri 5e56ba1964 update docs
2021-10-29 09:32:09 +05:30

624 lines
35 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This experiment trains an Attention with Linear Biases (ALiBi) based model on Tiny Shakespeare dataset."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Attention with Linear Biases (ALiBi) Experiment"/>
<meta name="twitter:description" content="This experiment trains an Attention with Linear Biases (ALiBi) based model on Tiny Shakespeare dataset."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/alibi/experiment.html"/>
<meta property="og:title" content="Attention with Linear Biases (ALiBi) Experiment"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Attention with Linear Biases (ALiBi) Experiment"/>
<meta property="og:description" content="This experiment trains an Attention with Linear Biases (ALiBi) based model on Tiny Shakespeare dataset."/>
<title>Attention with Linear Biases (ALiBi) Experiment</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/transformers/alibi/experiment.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">alibi</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/alibi/experiment.py">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="index.html">Attention with Linear Biases (ALiBi)</a> Experiment</h1>
<p>This is an annotated PyTorch experiment to train a <a href="index.html">ALiBi model</a>.</p>
<p>This is based on <a href="../gpt/index.html">our GPT model</a>.</p>
<p><a href="https://app.labml.ai/run/e87bec2a074911ec82cdd1759f10c925"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">17</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="kn">import</span> <span class="n">DataLoader</span>
<span class="lineno">19</span>
<span class="lineno">20</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span><span class="p">,</span> <span class="n">tracker</span>
<span class="lineno">21</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span><span class="p">,</span> <span class="n">calculate</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">labml_helpers.datasets.text</span> <span class="kn">import</span> <span class="n">SequentialUnBatchedDataset</span>
<span class="lineno">23</span><span class="kn">from</span> <span class="nn">labml_nn.transformers.alibi</span> <span class="kn">import</span> <span class="n">AlibiMultiHeadAttention</span>
<span class="lineno">24</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.nlp_autoregression</span> <span class="kn">import</span> <span class="n">transpose_batch</span>
<span class="lineno">25</span><span class="kn">from</span> <span class="nn">labml_nn.transformers</span> <span class="kn">import</span> <span class="n">TransformerConfigs</span>
<span class="lineno">26</span><span class="kn">from</span> <span class="nn">labml_nn.transformers.gpt</span> <span class="kn">import</span> <span class="n">Configs</span> <span class="k">as</span> <span class="n">GPTConfigs</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Configurations</h2>
<p>We extend <a href="../gpt/index.html">GPT configurations</a> and change the attention mechanism.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">29</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">GPTConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>ALiBi based transformer (defined below) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">37</span> <span class="n">transformer</span><span class="p">:</span> <span class="n">TransformerConfigs</span> <span class="o">=</span> <span class="s1">&#39;GPT_ALiBi&#39;</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Longer validation set </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">39</span> <span class="n">valid_seq_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">128</span>
<span class="lineno">40</span> <span class="n">valid_loader</span> <span class="o">=</span> <span class="s1">&#39;shuffled_longer_valid_loader&#39;</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p> Log losses at the initial and final tokens</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="k">def</span> <span class="nf">other_metrics</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">output</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>If there are more tokens that the training sequence length (during validation), </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">47</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">seq_len</span> <span class="o">&lt;</span> <span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Log the loss at training sequence length </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;loss.</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">seq_len</span> <span class="o">-</span> <span class="mi">1</span><span class="si">}</span><span class="s1">.&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">seq_len</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">target</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">seq_len</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]))</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Log the loss at the first token </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">51</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;loss.0.&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">target</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Log the loss at the final token </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">53</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;loss.</span><span class="si">{</span><span class="nb">int</span><span class="p">(</span><span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">-</span> <span class="mi">1</span><span class="si">}</span><span class="s1">.&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">target</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]))</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p> Create an ALiBi attention module</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">56</span><span class="k">def</span> <span class="nf">_alibi_mha</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">TransformerConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">60</span> <span class="k">return</span> <span class="n">AlibiMultiHeadAttention</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">n_heads</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">dropout_prob</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Set all attention mechanisms to ALiBi </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">64</span><span class="n">calculate</span><span class="p">(</span><span class="n">TransformerConfigs</span><span class="o">.</span><span class="n">encoder_attn</span><span class="p">,</span> <span class="s1">&#39;alibi_mha&#39;</span><span class="p">,</span> <span class="n">_alibi_mha</span><span class="p">)</span>
<span class="lineno">65</span><span class="n">calculate</span><span class="p">(</span><span class="n">TransformerConfigs</span><span class="o">.</span><span class="n">decoder_attn</span><span class="p">,</span> <span class="s1">&#39;alibi_mha&#39;</span><span class="p">,</span> <span class="n">_alibi_mha</span><span class="p">)</span>
<span class="lineno">66</span><span class="n">calculate</span><span class="p">(</span><span class="n">TransformerConfigs</span><span class="o">.</span><span class="n">decoder_mem_attn</span><span class="p">,</span> <span class="s1">&#39;alibi_mha&#39;</span><span class="p">,</span> <span class="n">_alibi_mha</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p> Shuffled validation data loader with <code class="highlight"><span></span><span class="n">valid_seq_len</span></code>
sequence length</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">69</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">valid_loader</span><span class="p">)</span>
<span class="lineno">70</span><span class="k">def</span> <span class="nf">shuffled_longer_valid_loader</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="k">return</span> <span class="n">DataLoader</span><span class="p">(</span><span class="n">SequentialUnBatchedDataset</span><span class="p">(</span><span class="n">text</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">text</span><span class="o">.</span><span class="n">valid</span><span class="p">,</span>
<span class="lineno">75</span> <span class="n">dataset</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">text</span><span class="p">,</span>
<span class="lineno">76</span> <span class="n">seq_len</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">valid_seq_len</span><span class="p">),</span>
<span class="lineno">77</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span>
<span class="lineno">78</span> <span class="n">collate_fn</span><span class="o">=</span><span class="n">transpose_batch</span><span class="p">,</span>
<span class="lineno">79</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<h3>ALiBi based Transformer configurations</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">transformer</span><span class="p">,</span> <span class="s1">&#39;GPT_ALiBi&#39;</span><span class="p">)</span>
<span class="lineno">83</span><span class="k">def</span> <span class="nf">_transformer_configs</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>We use our <a href="../configs.html#TransformerConfigs">configurable transformer implementation</a> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">90</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">TransformerConfigs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Set the vocabulary sizes for embeddings and generating logits </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">92</span> <span class="n">conf</span><span class="o">.</span><span class="n">n_src_vocab</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span>
<span class="lineno">93</span> <span class="n">conf</span><span class="o">.</span><span class="n">n_tgt_vocab</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>GPT uses GELU activation for position wise feedforward </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">95</span> <span class="n">conf</span><span class="o">.</span><span class="n">ffn</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="s1">&#39;GELU&#39;</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>ALiBi doesn&#x27;t use positional embeddings </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">98</span> <span class="n">conf</span><span class="o">.</span><span class="n">src_embed</span> <span class="o">=</span> <span class="s1">&#39;no_pos&#39;</span>
<span class="lineno">99</span> <span class="n">conf</span><span class="o">.</span><span class="n">tgt_embed</span> <span class="o">=</span> <span class="s1">&#39;no_pos&#39;</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Set all attention mechanisms to ALiBi </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">102</span> <span class="n">conf</span><span class="o">.</span><span class="n">encoder_attn</span> <span class="o">=</span> <span class="s1">&#39;alibi_mha&#39;</span>
<span class="lineno">103</span> <span class="n">conf</span><span class="o">.</span><span class="n">decoder_attn</span> <span class="o">=</span> <span class="s1">&#39;alibi_mha&#39;</span>
<span class="lineno">104</span> <span class="n">conf</span><span class="o">.</span><span class="n">decoder_mem_attn</span> <span class="o">=</span> <span class="s1">&#39;alibi_mha&#39;</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">107</span> <span class="k">return</span> <span class="n">conf</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">110</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Create experiment </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">112</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;gpt_alibi&quot;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Create configs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">114</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Override configurations </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="p">{</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Use character level tokenizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">118</span> <span class="s1">&#39;tokenizer&#39;</span><span class="p">:</span> <span class="s1">&#39;character&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>Prompt separator is blank </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">120</span> <span class="s1">&#39;prompt_separator&#39;</span><span class="p">:</span> <span class="s1">&#39;&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<p>Starting prompt for sampling </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">122</span> <span class="s1">&#39;prompt&#39;</span><span class="p">:</span> <span class="s1">&#39;It is &#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<p>Use Tiny Shakespeare dataset </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">124</span> <span class="s1">&#39;text&#39;</span><span class="p">:</span> <span class="s1">&#39;tiny_shakespeare&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>&#x27;text&#x27;: &#x27;tiny_shakespeare_no_split&#x27;, </p>
</div>
<div class='code'>
<div class="highlight"><pre></pre></div>
</div>
</div>
<div class='section' id='section-30'>
<div class='docs'>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Use a context size of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">128</span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">128</span> <span class="s1">&#39;seq_len&#39;</span><span class="p">:</span> <span class="mi">64</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-31'>
<div class='docs'>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
<p>Use a context size of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">128</span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">130</span> <span class="s1">&#39;valid_seq_len&#39;</span><span class="p">:</span> <span class="mi">80</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-32'>
<div class='docs'>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Train for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">32</span></span></span></span> epochs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">132</span> <span class="s1">&#39;epochs&#39;</span><span class="p">:</span> <span class="mi">128</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-33'>
<div class='docs'>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
<p>Batch size <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">128</span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">134</span> <span class="s1">&#39;batch_size&#39;</span><span class="p">:</span> <span class="mi">128</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-34'>
<div class='docs'>
<div class='section-link'>
<a href='#section-34'>#</a>
</div>
<p>Switch between training and validation for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">10</span></span></span></span> times per epoch </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">137</span> <span class="s1">&#39;inner_iterations&#39;</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-35'>
<div class='docs'>
<div class='section-link'>
<a href='#section-35'>#</a>
</div>
<p>Transformer configurations </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">140</span> <span class="s1">&#39;transformer.d_model&#39;</span><span class="p">:</span> <span class="mi">128</span><span class="p">,</span>
<span class="lineno">141</span> <span class="s1">&#39;transformer.ffn.d_ff&#39;</span><span class="p">:</span> <span class="mi">512</span><span class="p">,</span>
<span class="lineno">142</span> <span class="s1">&#39;transformer.n_heads&#39;</span><span class="p">:</span> <span class="mi">8</span><span class="p">,</span>
<span class="lineno">143</span> <span class="s1">&#39;transformer.n_layers&#39;</span><span class="p">:</span> <span class="mi">4</span><span class="p">,</span>
<span class="lineno">144</span> <span class="s1">&#39;transformer.dropout&#39;</span><span class="p">:</span> <span class="mf">0.1</span><span class="p">,</span>
<span class="lineno">145</span> <span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-36'>
<div class='docs'>
<div class='section-link'>
<a href='#section-36'>#</a>
</div>
<p>Set models for saving and loading </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">148</span> <span class="n">experiment</span><span class="o">.</span><span class="n">add_pytorch_models</span><span class="p">({</span><span class="s1">&#39;model&#39;</span><span class="p">:</span> <span class="n">conf</span><span class="o">.</span><span class="n">model</span><span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-37'>
<div class='docs'>
<div class='section-link'>
<a href='#section-37'>#</a>
</div>
<p>Start the experiment </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">151</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-38'>
<div class='docs'>
<div class='section-link'>
<a href='#section-38'>#</a>
</div>
<p>Run training </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">153</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-39'>
<div class='docs'>
<div class='section-link'>
<a href='#section-39'>#</a>
</div>
<p> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">157</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">158</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>