mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
282 lines
19 KiB
HTML
282 lines
19 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
|
<meta name="description" content="Implementation with explanation of fixed positional encodings as described in paper Attention is All You Need."/>
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta name="twitter:title" content="Fixed Positional Encodings"/>
|
|
<meta name="twitter:description" content="Implementation with explanation of fixed positional encodings as described in paper Attention is All You Need."/>
|
|
<meta name="twitter:site" content="@vpj"/>
|
|
<meta name="twitter:creator" content="@vpj"/>
|
|
|
|
<meta property="og:url" content="https://lab-ml.com/transformers/positional_encoding.html"/>
|
|
<meta property="og:title" content="Fixed Positional Encodings"/>
|
|
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta property="og:site_name" content="LabML Neural Networks"/>
|
|
<meta property="og:type" content="object"/>
|
|
<meta property="og:title" content="Fixed Positional Encodings"/>
|
|
<meta property="og:description" content="Implementation with explanation of fixed positional encodings as described in paper Attention is All You Need."/>
|
|
|
|
<title>Fixed Positional Encodings</title>
|
|
<link rel="stylesheet" href="../pylit.css">
|
|
<link rel="canonical" href="https://lab-ml.com/transformers/positional_encoding.html"/>
|
|
<!-- Global site tag (gtag.js) - Google Analytics -->
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
|
|
function gtag() {
|
|
dataLayer.push(arguments);
|
|
}
|
|
|
|
gtag('js', new Date());
|
|
|
|
gtag('config', 'G-4V3HC8HBLH');
|
|
</script>
|
|
</head>
|
|
<body>
|
|
<div id='container'>
|
|
<div id="background"></div>
|
|
<div class='section'>
|
|
<div class='docs'>
|
|
<p>
|
|
<a class="parent" href="/">home</a>
|
|
<a class="parent" href="index.html">transformers</a>
|
|
</p>
|
|
<p>
|
|
|
|
<a href="https://github.com/lab-ml/labml_nn/tree/master/transformers/positional_encoding.py">
|
|
<img alt="Github"
|
|
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
|
rel="nofollow">
|
|
<img alt="Join Slact"
|
|
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://twitter.com/labmlai"
|
|
rel="nofollow">
|
|
<img alt="Twitter"
|
|
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
|
style="max-width:100%;"/></a>
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-0'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-0'>#</a>
|
|
</div>
|
|
<h1>Fixed Positional Encodings</h1>
|
|
<p>The positional encoding encodes the position along the sequence into
|
|
a vector of size <code>d_model</code>.</p>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
PE_{p,2i} &= sin\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg) \\
|
|
PE_{p,2i + 1} &= cos\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)
|
|
\end{align}</script>
|
|
</p>
|
|
<p>Where $1 \leq 2i, 2i + 1 \leq d_{model}$
|
|
are the feature indexes in the encoding, and $p$ is the position.</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">23</span><span></span><span class="kn">import</span> <span class="nn">math</span>
|
|
<span class="lineno">24</span>
|
|
<span class="lineno">25</span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
|
|
<span class="lineno">26</span><span class="kn">import</span> <span class="nn">torch</span>
|
|
<span class="lineno">27</span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
|
|
<span class="lineno">28</span>
|
|
<span class="lineno">29</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-1'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-1'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">32</span><span class="k">class</span> <span class="nc">PositionalEncoding</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-2'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-2'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">33</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">dropout_prob</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">max_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5000</span><span class="p">):</span>
|
|
<span class="lineno">34</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
|
<span class="lineno">35</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout_prob</span><span class="p">)</span>
|
|
<span class="lineno">36</span>
|
|
<span class="lineno">37</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'positional_encodings'</span><span class="p">,</span> <span class="n">get_positional_encoding</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">max_len</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-3'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-3'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">39</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
|
|
<span class="lineno">40</span> <span class="n">pe</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">positional_encodings</span><span class="p">[:</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">False</span><span class="p">)</span>
|
|
<span class="lineno">41</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">pe</span>
|
|
<span class="lineno">42</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
|
<span class="lineno">43</span> <span class="k">return</span> <span class="n">x</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-4'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-4'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">46</span><span class="k">def</span> <span class="nf">get_positional_encoding</span><span class="p">(</span><span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">max_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5000</span><span class="p">):</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-5'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-5'>#</a>
|
|
</div>
|
|
<p>Empty encodings vectors</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">48</span> <span class="n">encodings</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">max_len</span><span class="p">,</span> <span class="n">d_model</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-6'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-6'>#</a>
|
|
</div>
|
|
<p>Position indexes</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">50</span> <span class="n">position</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_len</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-7'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-7'>#</a>
|
|
</div>
|
|
<p>$2 * i$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">two_i</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-8'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-8'>#</a>
|
|
</div>
|
|
<p>$10000^{\frac{2i}{d_{model}}$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">div_term</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">two_i</span> <span class="o">*</span> <span class="o">-</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mf">10000.0</span><span class="p">)</span> <span class="o">/</span> <span class="n">d_model</span><span class="p">))</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-9'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-9'>#</a>
|
|
</div>
|
|
<p>$PE_{p,2i} = sin\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">56</span> <span class="n">encodings</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">position</span> <span class="o">*</span> <span class="n">div_term</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-10'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-10'>#</a>
|
|
</div>
|
|
<p>$PE_{p,2i + 1} = cos\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">58</span> <span class="n">encodings</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">position</span> <span class="o">*</span> <span class="n">div_term</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-11'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-11'>#</a>
|
|
</div>
|
|
<p>Add batch dimension</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">61</span> <span class="n">encodings</span> <span class="o">=</span> <span class="n">encodings</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">False</span><span class="p">)</span>
|
|
<span class="lineno">62</span>
|
|
<span class="lineno">63</span> <span class="k">return</span> <span class="n">encodings</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-12'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-12'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">66</span><span class="k">def</span> <span class="nf">_test_positional_encoding</span><span class="p">():</span>
|
|
<span class="lineno">67</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
|
|
<span class="lineno">68</span>
|
|
<span class="lineno">69</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
|
|
<span class="lineno">70</span> <span class="n">pe</span> <span class="o">=</span> <span class="n">get_positional_encoding</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
|
|
<span class="lineno">71</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">100</span><span class="p">),</span> <span class="n">pe</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">4</span><span class="p">:</span><span class="mi">8</span><span class="p">]</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
|
|
<span class="lineno">72</span> <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="s2">"dim </span><span class="si">%d</span><span class="s2">"</span> <span class="o">%</span> <span class="n">p</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">]])</span>
|
|
<span class="lineno">73</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Positional encoding"</span><span class="p">)</span>
|
|
<span class="lineno">74</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
|
|
<span class="lineno">75</span>
|
|
<span class="lineno">76</span>
|
|
<span class="lineno">77</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="lineno">78</span> <span class="n">_test_positional_encoding</span><span class="p">()</span></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
|
</script>
|
|
<!-- MathJax configuration -->
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
tex2jax: {
|
|
inlineMath: [ ['$','$'] ],
|
|
displayMath: [ ['$$','$$'] ],
|
|
processEscapes: true,
|
|
processEnvironments: true
|
|
},
|
|
// Center justify equations in code and markdown cells. Elsewhere
|
|
// we use CSS to left justify single line equations in code cells.
|
|
displayAlign: 'center',
|
|
"HTML-CSS": { fonts: ["TeX"] }
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</script>
|
|
</body>
|
|
</html> |