mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 17:41:37 +08:00
780 lines
277 KiB
HTML
780 lines
277 KiB
HTML
<!DOCTYPE html>
|
||
<html>
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||
<meta name="description" content="A simple PyTorch implementation/tutorial of RAdam optimizer."/>
|
||
|
||
<meta name="twitter:card" content="summary"/>
|
||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta name="twitter:title" content="Rectified Adam (RAdam) optimizer"/>
|
||
<meta name="twitter:description" content="A simple PyTorch implementation/tutorial of RAdam optimizer."/>
|
||
<meta name="twitter:site" content="@labmlai"/>
|
||
<meta name="twitter:creator" content="@labmlai"/>
|
||
|
||
<meta property="og:url" content="https://nn.labml.ai/optimizers/radam.html"/>
|
||
<meta property="og:title" content="Rectified Adam (RAdam) optimizer"/>
|
||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||
<meta property="og:type" content="object"/>
|
||
<meta property="og:title" content="Rectified Adam (RAdam) optimizer"/>
|
||
<meta property="og:description" content="A simple PyTorch implementation/tutorial of RAdam optimizer."/>
|
||
|
||
<title>Rectified Adam (RAdam) optimizer</title>
|
||
<link rel="shortcut icon" href="/icon.png"/>
|
||
<link rel="stylesheet" href="../pylit.css?v=1">
|
||
<link rel="canonical" href="https://nn.labml.ai/optimizers/radam.html"/>
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-4V3HC8HBLH');
|
||
</script>
|
||
</head>
|
||
<body>
|
||
<div id='container'>
|
||
<div id="background"></div>
|
||
<div class='section'>
|
||
<div class='docs'>
|
||
<p>
|
||
<a class="parent" href="/">home</a>
|
||
<a class="parent" href="index.html">optimizers</a>
|
||
</p>
|
||
<p>
|
||
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/optimizers/radam.py">
|
||
<img alt="Github"
|
||
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
|
||
style="max-width:100%;"/></a>
|
||
<a href="https://twitter.com/labmlai"
|
||
rel="nofollow">
|
||
<img alt="Twitter"
|
||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||
style="max-width:100%;"/></a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-0'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-0'>#</a>
|
||
</div>
|
||
<h1>Rectified Adam (RAdam) optimizer</h1>
|
||
<p>This implementation is based on <a href="https://github.com/LiyuanLucasLiu/RAdam">the official implementation</a> of the paper <a href="https://papers.labml.ai/paper/1908.03265">On the Variance of the Adaptive Learning Rate and Beyond</a>.</p>
|
||
<p>We have implemented it in <a href="https://pytorch.org">PyTorch</a> as an extension to <a href="amsgrad.html">our AMSGrad implementation</a> thus requiring only the modifications to be implemented.</p>
|
||
<p>Adam optimizer sometimes converges to a bad local optima during the initial stages of the training; especially when training transformers. Researches use warmups to counter this; for the the initial training steps (warm-up stage) they use a low learning rate. This paper identifies the problem to be the high variance of adaptive learning rate during initial stages of training, and counters it using a new rectification term to reduce variance.</p>
|
||
<p>The paper also evaluates two variance reduction mechanisms: <em> <strong>Adam-2k</strong>: Only compute the adaptive learning rate (<span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcg" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> in <a href="adam.html">Adam</a>) during the first 2k steps, without changing parameters or calculating momentum (<span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqce" style=""><span class="mord" style=""><span class="mord mathnormal" style="">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>). </em> <strong>Adam-eps</strong>: Adam with large <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.48312em;vertical-align:0em;"></span><span class="mord coloredeq eqbv" style=""><span class="mord mathnormal" style="">ϵ</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord">1</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
|
||
<h2>Rectified Adam</h2>
|
||
<p>Let <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbd" style=""><span class="mord mathnormal" style="margin-right:0.03588em">σ</span><span class="mopen" style="">(</span><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style="">...</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span> and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbf" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style="">...</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span> be the functions to calculate momentum and adaptive learning rate. For Adam, they are</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:6.225502em;vertical-align:-2.862751em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.362751em;"><span style="top:-5.5893250000000005em;"><span class="pstrut" style="height:3.84974em;"></span><span class="mord"><span class="mord coloredeq eqbd" style=""><span class="mord mathnormal" style="margin-right:0.03588em">σ</span><span class="mopen" style="">(</span><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style="">...</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span><span style="top:-2.4772490000000005em;"><span class="pstrut" style="height:3.84974em;"></span><span class="mord"><span class="mord coloredeq eqbf" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style="">...</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.862751em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.362751em;"><span style="top:-5.5893250000000005em;"><span class="pstrut" style="height:3.84974em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6231659999999999em;"><span style="top:-2.2321040000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbk" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style=""><span class="mord coloredeq eqbw" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.6897100000000003em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbw" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.933456em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord coloredeq eqbw" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9090039999999999em;"><span style="top:-3.14734em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9623359999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.4772490000000005em;"><span class="pstrut" style="height:3.84974em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8497400000000002em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5548959999999998em;"><span style="top:-2.1765440000000003em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.933456em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9090039999999999em;"><span style="top:-3.14734em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959080000000001em;"><span style="top:-2.4231360000000004em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.27686399999999994em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbl" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1231659999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span style="top:-3.80974em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg height="3.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 3240" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1902599999999999em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.862751em;"><span></span></span></span></span></span></span></span></span></span></span></span><h3>Exponential moving average as simple moving average</h3>
|
||
<p>The distribution of exponential moving average can be approximated as a simple moving average.</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:3.30003em;vertical-align:-1.400015em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.900015em;"><span style="top:-3.9000150000000002em;"><span class="pstrut" style="height:3.75em;"></span><span class="mord"><span class="mord coloredeq eqch" style=""><span class="mord mathnormal" style="">p</span></span><span class="mord"><span class="delimsizing size4">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6231659999999999em;"><span style="top:-2.2321040000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbl" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.6897100000000003em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.933456em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9090039999999999em;"><span style="top:-3.14734em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.441336em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.258664em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9623359999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="delimsizing size4">)</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord coloredeq eqch" style=""><span class="mord mathnormal" style="">p</span></span><span class="mord"><span class="delimsizing size4">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7348949999999999em;"><span style="top:-2.3419em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span><span style="top:-3.2579em;"><span class="pstrut" style="height:3.0279em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.734895em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0278999999999998em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbo" style=""><span class="mord mathnormal mtight" style="margin-right:0.10764em">f</span><span class="mopen mtight" style="">(</span><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mpunct mtight" style="">,</span><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="mclose mtight" style="">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.441336em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.316995em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="delimsizing size4">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.400015em;"><span></span></span></span></span></span></span></span></span></span></span></span><p>Here we are taking the simple moving average of the last <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span> gradients. <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span> satisfies the following,</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:2.979946em;vertical-align:-1.239973em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.739973em;"><span style="top:-3.739973em;"><span class="pstrut" style="height:3.71761em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6231659999999999em;"><span style="top:-2.2321040000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbl" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.6897100000000003em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.933456em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9090039999999999em;"><span style="top:-3.14734em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathnormal">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9623359999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.71761em;"><span style="top:-2.3419em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span><span style="top:-3.2579em;"><span class="pstrut" style="height:3.0279em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.71761em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0278999999999998em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbo" style=""><span class="mord mathnormal mtight" style="margin-right:0.10764em">f</span><span class="mopen mtight" style="">(</span><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mpunct mtight" style="">,</span><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="mclose mtight" style="">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.239973em;"><span></span></span></span></span></span></span></span></span></span></span></span><p>which gives, <span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.20188em;vertical-align:-0.8804400000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804400000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.517232em;vertical-align:-0.9623359999999999em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5548959999999998em;"><span style="top:-2.2321040000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbl" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9623359999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
|
||
<h3>Scaled inverse chi-squared</h3>
|
||
<p>From above we have <span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.80002em;vertical-align:-0.65002em;"></span><span class="mord coloredeq eqch" style=""><span class="mord mathnormal" style="">p</span></span><span class="mord"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">...</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="delimsizing size2">)</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.0000299999999998em;vertical-align:-1.25003em;"></span><span class="mord coloredeq eqch" style=""><span class="mord mathnormal" style="">p</span></span><span class="mord"><span class="delimsizing size4">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7348949999999999em;"><span style="top:-2.3419em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span><span style="top:-3.2579em;"><span class="pstrut" style="height:3.0279em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.734895em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0278999999999998em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbo" style=""><span class="mord mathnormal mtight" style="margin-right:0.10764em">f</span><span class="mopen mtight" style="">(</span><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mpunct mtight" style="">,</span><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="mclose mtight" style="">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.441336em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.316995em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="delimsizing size4">)</span></span></span></span></span></span> where <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.14736em;">N</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>. Note that <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">ma</span></span></span></span> here is the standard deviation and different from <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span></span></span></span> for momentum.</p>
|
||
<p><a href="https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution">Scaled inverse chi-squared</a> is the distribution of squared inverse of mean of <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqch" style=""><span class="mord mathnormal" style="">p</span></span></span></span></span> normal distributions. <span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:3.0000299999999998em;vertical-align:-1.25003em;"></span><span class="mord coloredeq eqch" style=""><span class="mord mathnormal" style="">p</span></span><span class="mord"><span class="delimsizing size4">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7348949999999999em;"><span style="top:-2.3419em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span><span style="top:-3.2579em;"><span class="pstrut" style="height:3.0279em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.734895em;"><span class="pstrut" style="height:3.0279em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0278999999999998em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbo" style=""><span class="mord mathnormal mtight" style="margin-right:0.10764em">f</span><span class="mopen mtight" style="">(</span><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mpunct mtight" style="">,</span><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="mclose mtight" style="">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.441336em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight">+</span><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.316995em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="delimsizing size4">)</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.00744em;vertical-align:-0.686em;"></span><span class="mord coloredeq eqz" style=""><span class="mord text" style=""><span class="mord" style="">Scale-inv</span></span><span class="mord" style=""><span class="mord mathcal" style="margin-right:0.14643em">X</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span></span></span></span></span> where <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbo" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="mopen" style="">(</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span>.</p>
|
||
<h3>Rectification</h3>
|
||
<p>They prove that variance of <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span></span></span></span> decreases with <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span></span></span></span> when <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord coloredeq eqz" style=""><span class="mord text" style=""><span class="mord" style="">Scale-inv</span></span><span class="mord" style=""><span class="mord mathcal" style="margin-right:0.14643em">X</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span></span></span></span>.</p>
|
||
<p>Therefore the variance is minimized at maximal <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span></span></span></span> which is <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.326216em;vertical-align:-0.481108em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.481108em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span>. Let the minimum variance be <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqbi" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord text mtight" style=""><span class="mord mtight" style="">va</span><span class="mord mtight coloredeq eqci" style=""><span class="mord mtight" style="">r</span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p>In order to ensure that the adaptive learning rate <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span></span></span></span> has consistent variance, we rectify the variance with <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span></span></span></p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:3.34em;vertical-align:-1.4200000000000002em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9199999999999997em;"><span style="top:-3.92em;"><span class="pstrut" style="height:3.769035em;"></span><span class="mord"><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7690350000000001em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.2600000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbe" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mord" style=""><span class="delimsizing size1" style=""><span style="">[</span></span></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mord" style=""><span class="delimsizing size1" style=""><span style="">]</span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbi" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord text mtight" style=""><span class="mord mtight" style="">va</span><span class="mord mtight coloredeq eqci" style=""><span class="mord mtight" style="">r</span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.09001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.729035em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg height="3.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 3240" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.270965em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4200000000000002em;"><span></span></span></span></span></span></span></span></span></span></span></span><h3>Approximating <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbm" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mopen" style="">[</span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mclose" style="">]</span></span></span></span></span></h3>
|
||
<p>They estimate <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbm" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mopen" style="">[</span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mclose" style="">]</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.62892em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10892em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mathbb mtight">E</span><span class="mopen mtight">[</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">.</span><span class="mclose mtight">)</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">Va</span><span class="mord mtight coloredeq eqci" style=""><span class="mord mathnormal mtight" style="margin-right:0.02778em">r</span></span><span class="mopen mtight">[</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913142857142857em;"><span style="top:-2.931em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mtight">.</span><span class="mclose mtight">)]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> based on first order expansion of <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.24em;vertical-align:-0.30499999999999994em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span></span></span><span style="top:-2.8950000000000005em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg height="1.28em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1296" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M263,681c0.7,0,18,39.7,52,119
|
||
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||
c340,-704.7,510.7,-1060.3,512,-1067
|
||
l0 -0
|
||
c4.7,-7.3,11,-11,19,-11
|
||
H40000v40H1012.3
|
||
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||
M1001 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.30499999999999994em;"><span></span></span></span></span></span></span></span></span> 🤪 I didn't get how it was derived.</p>
|
||
<p>From <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord coloredeq eqz" style=""><span class="mord text" style=""><span class="mord" style="">Scale-inv</span></span><span class="mord" style=""><span class="mord mathcal" style="margin-right:0.14643em">X</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span></span></span></span></span></span></span></span></span> distribution we have,</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:5.398656000000001em;vertical-align:-2.4493280000000004em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.9493280000000004em;"><span style="top:-4.949328em;"><span class="pstrut" style="height:3.491108em;"></span><span class="mord"><span class="mord mathbb">E</span><span class="mord"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span><span class="mord"><span class="delimsizing size1">]</span></span></span></span><span style="top:-2.27778em;"><span class="pstrut" style="height:3.491108em;"></span><span class="mord"><span class="mord mathnormal">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mord"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ψ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span><span class="mord"><span class="delimsizing size1">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.4493280000000004em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.9493280000000004em;"><span style="top:-4.949328em;"><span class="pstrut" style="height:3.491108em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">ρ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804400000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.27778em;"><span class="pstrut" style="height:3.491108em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.4493280000000004em;"><span></span></span></span></span></span></span></span></span></span></span></span><p>which gives, <span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqbm" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mopen" style="">[</span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mclose" style="">]</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.04356em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
|
||
<h3>Rectification term</h3>
|
||
<p>We have</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:5.683559999999999em;vertical-align:-2.591779999999999em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.09178em;"><span style="top:-5.09178em;"><span class="pstrut" style="height:3.769035em;"></span><span class="mord"><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span></span><span style="top:-2.4132550000000013em;"><span class="pstrut" style="height:3.769035em;"></span><span class="mord"><span class="mord coloredeq eqbm" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mopen" style="">[</span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mclose" style="">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.591779999999999em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.09178em;"><span style="top:-5.09178em;"><span class="pstrut" style="height:3.769035em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7690350000000001em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.2600000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbe" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mord" style=""><span class="delimsizing size1" style=""><span style="">[</span></span></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mord" style=""><span class="delimsizing size1" style=""><span style="">]</span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbi" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord text mtight" style=""><span class="mord mtight" style="">va</span><span class="mord mtight coloredeq eqci" style=""><span class="mord mtight" style="">r</span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.09001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.729035em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg height="3.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 3240" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.270965em;"><span></span></span></span></span></span></span></span><span style="top:-2.4132550000000013em;"><span class="pstrut" style="height:3.769035em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">ρ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.591779999999999em;"><span></span></span></span></span></span></span></span></span></span></span></span><p>where <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqbi" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord text mtight" style=""><span class="mord mtight" style="">va</span><span class="mord mtight coloredeq eqci" style=""><span class="mord mtight" style="">r</span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> is <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.20001em;vertical-align:-0.35001em;"></span><span class="mord coloredeq eqbe" style=""><span class="mord mathnormal" style="">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mord" style=""><span class="delimsizing size1" style=""><span style="">[</span></span></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span><span class="mord" style=""><span class="delimsizing size1" style=""><span style="">]</span></span></span></span></span></span></span> for <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbp" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>. Lt <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span></span></span></span> and step <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span></span></span></span> be <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>, and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> be the rectification term at step <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span></span></span></span>.</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:4.68712em;vertical-align:-2.09356em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.59356em;"><span style="top:-4.59356em;"><span class="pstrut" style="height:3.10756em;"></span><span class="mord"><span class="mord coloredeq eqbi" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord text mtight" style=""><span class="mord mtight" style="">va</span><span class="mord mtight coloredeq eqci" style=""><span class="mord mtight" style="">r</span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.10756em;"></span><span class="mord"><span class="mord mathnormal">Va</span><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.03588em;">ψ</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">...</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mclose">)]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.09356em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.59356em;"><span style="top:-4.59356em;"><span class="pstrut" style="height:3.10756em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqbp" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.10756em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mopen">(</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.09356em;"><span></span></span></span></span></span></span></span></span></span></span></span><p>This gives,</p>
|
||
<span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:3.34em;vertical-align:-1.4200000000000002em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9199999999999997em;"><span style="top:-3.92em;"><span class="pstrut" style="height:3.879375em;"></span><span class="mord"><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4200000000000002em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.9199999999999997em;"><span style="top:-3.92em;"><span class="pstrut" style="height:3.879375em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.879375em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord coloredeq eqbp" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.839375em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg height="3.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 3240" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.160625em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4200000000000002em;"><span></span></span></span></span></span></span></span></span></span></span></span>
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">139</span><span></span><span class="kn">import</span> <span class="nn">math</span>
|
||
<span class="lineno">140</span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Optional</span>
|
||
<span class="lineno">141</span>
|
||
<span class="lineno">142</span><span class="kn">import</span> <span class="nn">torch</span>
|
||
<span class="lineno">143</span>
|
||
<span class="lineno">144</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers</span> <span class="kn">import</span> <span class="n">WeightDecay</span>
|
||
<span class="lineno">145</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers.amsgrad</span> <span class="kn">import</span> <span class="n">AMSGrad</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-1'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-1'>#</a>
|
||
</div>
|
||
<h2>Rectified Adam Optimizer</h2>
|
||
<p>This class extends from AMSAdam optimizer defined in <a href="amsadam.html"><code class="highlight"><span></span><span class="n">amsadam</span><span class="o">.</span><span class="n">py</span></code>
|
||
</a>.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">148</span><span class="k">class</span> <span class="nc">RAdam</span><span class="p">(</span><span class="n">AMSGrad</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-2'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-2'>#</a>
|
||
</div>
|
||
<h3>Initialize the optimizer</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">params</span></code>
|
||
is the list of parameters </li>
|
||
<li><code class="highlight"><span></span><span class="n">lr</span></code>
|
||
is the learning rate <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord coloredeq eqbz" style=""><span class="mord mathnormal" style="margin-right:0.0037em">α</span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">betas</span></code>
|
||
is a tuple of (<span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbw" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>, <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>) </li>
|
||
<li><code class="highlight"><span></span><span class="n">eps</span></code>
|
||
is <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord coloredeq eqbj" style=""><span class="mord accent" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord coloredeq eqbv" style=""><span class="mord mathnormal" style="">ϵ</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.19444em;"><span class="mord" style="">^</span></span></span></span></span></span></span></span></span></span></span> or <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord coloredeq eqbv" style=""><span class="mord mathnormal" style="">ϵ</span></span></span></span></span> based on <code class="highlight"><span></span><span class="n">optimized_update</span></code>
|
||
</li>
|
||
<li><code class="highlight"><span></span><span class="n">weight_decay</span></code>
|
||
is an instance of class <code class="highlight"><span></span><span class="n">WeightDecay</span></code>
|
||
defined in <a href="index.html"><code class="highlight"><span></span><span class="fm">__init__</span><span class="o">.</span><span class="n">py</span></code>
|
||
</a> </li>
|
||
<li><code class="highlight"><span></span><span class="n">optimized_update</span></code>
|
||
is a flag whether to optimize the bias correction of the second moment by doing it after adding <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord coloredeq eqbv" style=""><span class="mord mathnormal" style="">ϵ</span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">amsgrad</span></code>
|
||
is a flag indicating whether to use AMSGrad or fallback to plain Adam </li>
|
||
<li><code class="highlight"><span></span><span class="n">degenerate_to_sgd</span></code>
|
||
whether to use sgd when the rectification term <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> is intractable. </li>
|
||
<li><code class="highlight"><span></span><span class="n">defaults</span></code>
|
||
is a dictionary of default for group values. This is useful when you want to extend the class <code class="highlight"><span></span><span class="n">RAdam</span></code>
|
||
.</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">155</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mf">1e-3</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">),</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-8</span><span class="p">,</span>
|
||
<span class="lineno">156</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="n">WeightDecay</span> <span class="o">=</span> <span class="n">WeightDecay</span><span class="p">(),</span>
|
||
<span class="lineno">157</span> <span class="n">optimized_update</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
|
||
<span class="lineno">158</span> <span class="n">amsgrad</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
|
||
<span class="lineno">159</span> <span class="n">degenerated_to_sgd</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">defaults</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-3'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-3'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">175</span> <span class="bp">self</span><span class="o">.</span><span class="n">degenerated_to_sgd</span> <span class="o">=</span> <span class="n">degenerated_to_sgd</span>
|
||
<span class="lineno">176</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="p">,</span> <span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">,</span> <span class="n">optimized_update</span><span class="p">,</span> <span class="n">amsgrad</span><span class="p">,</span> <span class="n">defaults</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-4'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-4'>#</a>
|
||
</div>
|
||
<h3>Take an update step for a given parameter tensor</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">state</span></code>
|
||
is the optimizer state of the parameter (tensor) </li>
|
||
<li><code class="highlight"><span></span><span class="n">group</span></code>
|
||
stores optimizer attributes of the parameter group </li>
|
||
<li><code class="highlight"><span></span><span class="n">grad</span></code>
|
||
is the current gradient tensor <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqcd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> for the parameter <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqbn" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">param</span></code>
|
||
is the parameter tensor <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqbn" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">178</span> <span class="k">def</span> <span class="nf">step_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-5'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-5'>#</a>
|
||
</div>
|
||
<p>Calculate weight decay </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">189</span> <span class="n">grad</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="n">grad</span><span class="p">,</span> <span class="n">group</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-6'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-6'>#</a>
|
||
</div>
|
||
<p>Get <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqce" style=""><span class="mord" style=""><span class="mord mathnormal" style="">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcg" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>; i.e. <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span></span></span></span> and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span></span></span></span> without bias correction </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">192</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_mv</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">grad</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-7'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-7'>#</a>
|
||
</div>
|
||
<p>Calculate <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span></span></span></span> the number of optimizer steps </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">195</span> <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-8'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-8'>#</a>
|
||
</div>
|
||
<p>Perform <em>RAdam</em> update </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">198</span> <span class="bp">self</span><span class="o">.</span><span class="n">r_adam_update</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">param</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-9'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-9'>#</a>
|
||
</div>
|
||
<h3>Calculate rectification term <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></h3>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">200</span> <span class="nd">@staticmethod</span>
|
||
<span class="lineno">201</span> <span class="k">def</span> <span class="nf">calc_rectification_term</span><span class="p">(</span><span class="n">beta2</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">step</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-10'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-10'>#</a>
|
||
</div>
|
||
<p><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.072336em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">207</span> <span class="n">beta2_t</span> <span class="o">=</span> <span class="n">beta2</span> <span class="o">**</span> <span class="n">step</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-11'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-11'>#</a>
|
||
</div>
|
||
<p><span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbp" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.20188em;vertical-align:-0.8804400000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804400000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">209</span> <span class="n">rho_inf</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">beta2</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-12'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-12'>#</a>
|
||
</div>
|
||
<p><span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.20188em;vertical-align:-0.8804400000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804400000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.517232em;vertical-align:-0.9623359999999999em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5548959999999998em;"><span style="top:-2.2321040000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9623359999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">211</span> <span class="n">rho</span> <span class="o">=</span> <span class="n">rho_inf</span> <span class="o">-</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">step</span> <span class="o">*</span> <span class="n">beta2_t</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">beta2_t</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-13'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-13'>#</a>
|
||
</div>
|
||
<p><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> is tractable when <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">>=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span></span></span></span>. We are being a little more conservative since it's an approximated value </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">215</span> <span class="k">if</span> <span class="n">rho</span> <span class="o">>=</span> <span class="mi">5</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-14'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-14'>#</a>
|
||
</div>
|
||
<p><span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.04em;vertical-align:-1.160625em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.879375em;"><span class="svg-align" style="top:-5em;"><span class="pstrut" style="height:5em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord coloredeq eqca" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord coloredeq eqbp" style=""><span class="mord" style=""><span class="mord coloredeq eqcc" style=""><span class="mord mathnormal" style="">ρ</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">∞</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.839375em;"><span class="pstrut" style="height:5em;"></span><span class="hide-tail" style="min-width:1.02em;height:3.08em;"><svg height="3.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 3240" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M473,2793
|
||
c339.3,-1799.3,509.3,-2700,510,-2702 l0 -0
|
||
c3.3,-7.3,9.3,-11,18,-11 H400000v40H1017.7
|
||
s-90.5,478,-276.2,1466c-185.7,988,-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9
|
||
c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200
|
||
c0,-1.3,-5.3,8.7,-16,30c-10.7,21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26
|
||
s76,-153,76,-153s77,-151,77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,
|
||
606zM1001 80h400000v40H1017.7z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.160625em;"><span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">217</span> <span class="n">r2</span> <span class="o">=</span> <span class="p">(</span><span class="n">rho</span> <span class="o">-</span> <span class="mi">4</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">rho_inf</span> <span class="o">-</span> <span class="mi">4</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">rho</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span> <span class="o">/</span> <span class="n">rho</span> <span class="o">*</span> <span class="n">rho_inf</span> <span class="o">/</span> <span class="p">(</span><span class="n">rho_inf</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
|
||
<span class="lineno">218</span> <span class="k">return</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">r2</span><span class="p">)</span>
|
||
<span class="lineno">219</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">220</span> <span class="k">return</span> <span class="kc">None</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-15'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-15'>#</a>
|
||
</div>
|
||
<h3>Do the <em>RAdam</em> parameter update</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">state</span></code>
|
||
is the optimizer state of the parameter (tensor) </li>
|
||
<li><code class="highlight"><span></span><span class="n">group</span></code>
|
||
stores optimizer attributes of the parameter group </li>
|
||
<li><code class="highlight"><span></span><span class="n">param</span></code>
|
||
is the parameter tensor <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqbn" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">m</span></code>
|
||
and <code class="highlight"><span></span><span class="n">v</span></code>
|
||
are the uncorrected first and second moments <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqce" style=""><span class="mord" style=""><span class="mord mathnormal" style="">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcg" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>; i.e. <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord">.</span><span class="mclose">)</span></span></span></span> and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqby" style=""><span class="mord mathnormal" style="margin-right:0.03588em">ψ</span><span class="mopen" style="">(</span><span class="mord" style="">.</span><span class="mclose" style="">)</span></span></span></span></span> without bias correction</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">222</span> <span class="k">def</span> <span class="nf">r_adam_update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">,</span>
|
||
<span class="lineno">223</span> <span class="n">m</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">v</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-16'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-16'>#</a>
|
||
</div>
|
||
<p>Get <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbw" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">235</span> <span class="n">beta1</span><span class="p">,</span> <span class="n">beta2</span> <span class="o">=</span> <span class="n">group</span><span class="p">[</span><span class="s1">'betas'</span><span class="p">]</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-17'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-17'>#</a>
|
||
</div>
|
||
<p>Bias correction term for <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqbs" style=""><span class="mord" style=""><span class="mord accent" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="">m</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord" style="">^</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>, <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.072336em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbk" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style=""><span class="mord coloredeq eqbw" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">237</span> <span class="n">bias_correction1</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">beta1</span> <span class="o">**</span> <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-18'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-18'>#</a>
|
||
</div>
|
||
<p>Bias correction term for <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqbt" style=""><span class="mord" style=""><span class="mord accent" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.22222em;"><span class="mord" style="">^</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>, <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.072336em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbl" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbr" style=""><span class="mord" style=""><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">239</span> <span class="n">bias_correction2</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">beta2</span> <span class="o">**</span> <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span>
|
||
<span class="lineno">240</span>
|
||
<span class="lineno">241</span> <span class="n">r</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">calc_rectification_term</span><span class="p">(</span><span class="n">beta2</span><span class="p">,</span> <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-19'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-19'>#</a>
|
||
</div>
|
||
<p>Get learning rate </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">244</span> <span class="n">lr</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_lr</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-20'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-20'>#</a>
|
||
</div>
|
||
<p>If <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> is intractable </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">247</span> <span class="k">if</span> <span class="n">r</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-21'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-21'>#</a>
|
||
</div>
|
||
<p>Whether to optimize the computation by combining scalar computations </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">249</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimized_update</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-22'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-22'>#</a>
|
||
</div>
|
||
<p>Denominator <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.31472em;"></span><span class="mord coloredeq eqba" style=""><span class="mord sqrt" style=""><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.72528em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em"><span class="mord coloredeq eqcg" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.68528em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.31472em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord coloredeq eqbj" style=""><span class="mord accent" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord coloredeq eqbv" style=""><span class="mord mathnormal" style="">ϵ</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.19444em;"><span class="mord" style="">^</span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">251</span> <span class="n">denominator</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">sqrt</span><span class="p">()</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'eps'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-23'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-23'>#</a>
|
||
</div>
|
||
<p>Step size <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.31472em;"></span><span class="mord coloredeq eqbz" style=""><span class="mord mathnormal" style="margin-right:0.0037em">α</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.72528em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.68528em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.31472em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.822356em;vertical-align:-0.49275599999999986em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3296000000000001em;"><span style="top:-2.643352em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight"><span class="mord mtight coloredeq eqbw" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.5734925em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0801535714285715em;"><span class="svg-align" style="top:-3.428571428571429em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="mord mtight" style="padding-left:1.19em;"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight coloredeq eqbr" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.0521535714285717em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.5428571428571431em;"><svg height="1.5428571428571431em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.37641785714285714em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.49275599999999986em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">253</span> <span class="n">step_size</span> <span class="o">=</span> <span class="n">lr</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">bias_correction2</span><span class="p">)</span> <span class="o">*</span> <span class="n">r</span> <span class="o">/</span> <span class="n">bias_correction1</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-24'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-24'>#</a>
|
||
</div>
|
||
<p>Update parameters <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">←</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqbn" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.822356em;vertical-align:-0.49275599999999986em;"></span><span class="mord coloredeq eqbz" style=""><span class="mord mathnormal" style="margin-right:0.0037em">α</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.72528em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.68528em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.31472em;"><span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3296000000000001em;"><span style="top:-2.643352em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight"><span class="mord mtight coloredeq eqbw" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.5734925em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0801535714285715em;"><span class="svg-align" style="top:-3.428571428571429em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="mord mtight" style="padding-left:1.19em;"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight coloredeq eqbr" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.0521535714285717em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.5428571428571431em;"><svg height="1.5428571428571431em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.37641785714285714em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.49275599999999986em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2704084999999998em;vertical-align:-0.5589165em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7114919999999999em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqba" style=""><span class="mord sqrt mtight" style=""><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.734405em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em"><span class="mord mtight coloredeq eqcg" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.6944049999999997em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.08em"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.30559500000000006em;"><span></span></span></span></span></span><span class="mbin mtight" style="">+</span><span class="mord mtight coloredeq eqbj" style=""><span class="mord accent mtight" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mtight coloredeq eqbv" style=""><span class="mord mathnormal mtight" style="">ϵ</span></span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.19444em;"><span class="mord mtight" style="">^</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqce" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5589165em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">256</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">denominator</span><span class="p">,</span> <span class="n">value</span><span class="o">=-</span><span class="n">step_size</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-25'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-25'>#</a>
|
||
</div>
|
||
<p>Computation without optimization </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">258</span> <span class="k">else</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-26'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-26'>#</a>
|
||
</div>
|
||
<p>Denominator <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.8676em;vertical-align:-0.8295999999999999em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.038em;"><span style="top:-2.4338925em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0801535714285715em;"><span class="svg-align" style="top:-3.428571428571429em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="mord mtight" style="padding-left:1.19em;"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight coloredeq eqbr" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqbx" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.0521535714285717em;"><span class="pstrut" style="height:3.428571428571429em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.5428571428571431em;"><svg height="1.5428571428571431em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.37641785714285714em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.5239165em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.734405em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mtight coloredeq eqcg" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.6944049999999997em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.08em;"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.30559500000000006em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8295999999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord coloredeq eqbv" style=""><span class="mord mathnormal" style="">ϵ</span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">260</span> <span class="n">denominator</span> <span class="o">=</span> <span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">sqrt</span><span class="p">()</span> <span class="o">/</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">bias_correction2</span><span class="p">))</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'eps'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-27'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-27'>#</a>
|
||
</div>
|
||
<p>Step size <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.5307559999999998em;vertical-align:-0.49275599999999986em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.038em;"><span style="top:-2.643352em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight"><span class="mord mtight coloredeq eqbw" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.5239165em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbz" style=""><span class="mord mathnormal mtight" style="margin-right:0.0037em">α</span></span><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.734405em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mtight coloredeq eqcf" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqci" style=""><span class="mord mathnormal mtight" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.6944049999999997em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.08em;"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.30559500000000006em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.49275599999999986em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">262</span> <span class="n">step_size</span> <span class="o">=</span> <span class="n">lr</span> <span class="o">*</span> <span class="n">r</span> <span class="o">/</span> <span class="n">bias_correction1</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-28'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-28'>#</a>
|
||
</div>
|
||
<p>Update parameters <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">←</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqbn" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.31472em;"></span><span class="mord coloredeq eqbz" style=""><span class="mord mathnormal" style="margin-right:0.0037em">α</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.72528em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.68528em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.31472em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.434208em;vertical-align:-0.5379999999999999em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8962079999999999em;"><span style="top:-2.5835585em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.866345em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mtight coloredeq eqbt" style=""><span class="mord mtight" style=""><span class="mord accent mtight" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight" style="margin-right:0.03588em">v</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.22222em;"><span class="mord mtight" style="">^</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-2.826345em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.08em;"><svg height="1.08em" preserveaspectratio="xMinYMin slice" viewbox="0 0 400000 1080" width="400em" xmlns="http://www.w3.org/2000/svg"><path d="M95,702
|
||
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||
c69,-144,104.5,-217.7,106.5,-221
|
||
l0 -0
|
||
c5.3,-9.3,12,-14,20,-14
|
||
H400000v40H845.2724
|
||
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.173655em;"><span></span></span></span></span></span><span class="mbin mtight">+</span><span class="mord mtight coloredeq eqbv" style=""><span class="mord mathnormal mtight" style="">ϵ</span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4101em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbs" style=""><span class="mord mtight" style=""><span class="mord accent mtight" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight" style="">m</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord mtight" style="">^</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.29634285714285713em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5379999999999999em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">265</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">denominator</span><span class="p">,</span> <span class="n">value</span><span class="o">=-</span><span class="n">step_size</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-29'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-29'>#</a>
|
||
</div>
|
||
<p>If <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> is intractable do a SGD with momentum </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">268</span> <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">degenerated_to_sgd</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-30'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-30'>#</a>
|
||
</div>
|
||
<p>Step size <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.188148em;vertical-align:-0.49275599999999986em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.643352em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mtight"><span class="mord mtight coloredeq eqbw" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31731428571428577em;"><span style="top:-2.357em;margin-left:-0.05278em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7809257142857142em;"><span style="top:-2.841582857142857em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight coloredeq eqbz" style=""><span class="mord mathnormal mtight" style="margin-right:0.0037em">α</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.49275599999999986em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">270</span> <span class="n">step_size</span> <span class="o">=</span> <span class="n">lr</span> <span class="o">/</span> <span class="n">bias_correction1</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-31'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-31'>#</a>
|
||
</div>
|
||
<p>Update parameters <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">←</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqbn" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.44445em;vertical-align:0em;"></span><span class="mord coloredeq eqbz" style=""><span class="mord mathnormal" style="margin-right:0.0037em">α</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqbs" style=""><span class="mord" style=""><span class="mord accent" style=""><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="">m</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord" style="">^</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">273</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=-</span><span class="n">step_size</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-32'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-32'>#</a>
|
||
</div>
|
||
<h3>Plot <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqcf" style=""><span class="mord" style=""><span class="mord coloredeq eqci" style=""><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight coloredeq eqcj" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> against <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord coloredeq eqcj" style=""><span class="mord mathnormal" style="">t</span></span></span></span></span> for various <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqbx" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.05278em">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style="">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></h3>
|
||
<p><img alt="Plot of r_t" src="radam_r_t.png"></p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">276</span><span class="k">def</span> <span class="nf">_test_rectification_term</span><span class="p">():</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-33'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-33'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">282</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
|
||
<span class="lineno">283</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
|
||
<span class="lineno">284</span>
|
||
<span class="lineno">285</span> <span class="n">beta2</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.9999</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">,</span> <span class="mf">0.99</span><span class="p">,</span> <span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">]</span>
|
||
<span class="lineno">286</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5_000</span><span class="p">),</span> <span class="p">[[</span><span class="n">RAdam</span><span class="o">.</span><span class="n">calc_rectification_term</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="n">beta2</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5_000</span><span class="p">)])</span>
|
||
<span class="lineno">287</span> <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">beta2</span><span class="p">)</span>
|
||
<span class="lineno">288</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Optimizer"</span><span class="p">)</span>
|
||
<span class="lineno">289</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
|
||
<span class="lineno">290</span>
|
||
<span class="lineno">291</span>
|
||
<span class="lineno">292</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
||
<span class="lineno">293</span> <span class="n">_test_rectification_term</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='footer'>
|
||
<a href="https://papers.labml.ai">Trending Research Papers</a>
|
||
<a href="https://labml.ai">labml.ai</a>
|
||
</div>
|
||
</div>
|
||
<script src=../interactive.js?v=1"></script>
|
||
<script>
|
||
function handleImages() {
|
||
var images = document.querySelectorAll('p>img')
|
||
|
||
for (var i = 0; i < images.length; ++i) {
|
||
handleImage(images[i])
|
||
}
|
||
}
|
||
|
||
function handleImage(img) {
|
||
img.parentElement.style.textAlign = 'center'
|
||
|
||
var modal = document.createElement('div')
|
||
modal.id = 'modal'
|
||
|
||
var modalContent = document.createElement('div')
|
||
modal.appendChild(modalContent)
|
||
|
||
var modalImage = document.createElement('img')
|
||
modalContent.appendChild(modalImage)
|
||
|
||
var span = document.createElement('span')
|
||
span.classList.add('close')
|
||
span.textContent = 'x'
|
||
modal.appendChild(span)
|
||
|
||
img.onclick = function () {
|
||
console.log('clicked')
|
||
document.body.appendChild(modal)
|
||
modalImage.src = img.src
|
||
}
|
||
|
||
span.onclick = function () {
|
||
document.body.removeChild(modal)
|
||
}
|
||
}
|
||
|
||
handleImages()
|
||
</script>
|
||
</body>
|
||
</html> |