mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 02:39:16 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | ||
| <html lang="zh">
 | ||
| <head>
 | ||
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | ||
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | ||
|     <meta name="description" content=""/>
 | ||
| 
 | ||
|     <meta name="twitter:card" content="summary"/>
 | ||
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | ||
|     <meta name="twitter:title" content="近端策略优化-PPO"/>
 | ||
|     <meta name="twitter:description" content=""/>
 | ||
|     <meta name="twitter:site" content="@labmlai"/>
 | ||
|     <meta name="twitter:creator" content="@labmlai"/>
 | ||
| 
 | ||
|     <meta property="og:url" content="https://nn.labml.ai/rl/ppo/readme.html"/>
 | ||
|     <meta property="og:title" content="近端策略优化-PPO"/>
 | ||
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | ||
|     <meta property="og:site_name" content="近端策略优化-PPO"/>
 | ||
|     <meta property="og:type" content="object"/>
 | ||
|     <meta property="og:title" content="近端策略优化-PPO"/>
 | ||
|     <meta property="og:description" content=""/>
 | ||
| 
 | ||
|     <title>近端策略优化-PPO</title>
 | ||
|     <link rel="shortcut icon" href="/icon.png"/>
 | ||
|     <link rel="stylesheet" href="../../pylit.css?v=1">
 | ||
|     <link rel="canonical" href="https://nn.labml.ai/rl/ppo/readme.html"/>
 | ||
|     <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
 | ||
| 
 | ||
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | ||
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | ||
|     <script>
 | ||
|         window.dataLayer = window.dataLayer || [];
 | ||
| 
 | ||
|         function gtag() {
 | ||
|             dataLayer.push(arguments);
 | ||
|         }
 | ||
| 
 | ||
|         gtag('js', new Date());
 | ||
| 
 | ||
|         gtag('config', 'G-4V3HC8HBLH');
 | ||
|     </script>
 | ||
| </head>
 | ||
| <body>
 | ||
| <div id='container'>
 | ||
|     <div id="background"></div>
 | ||
|     <div class='section'>
 | ||
|         <div class='docs'>
 | ||
|             <p>
 | ||
|                 <a class="parent" href="/">home</a>
 | ||
|                 <a class="parent" href="../index.html">rl</a>
 | ||
|                 <a class="parent" href="index.html">ppo</a>
 | ||
|             </p>
 | ||
|             <p>
 | ||
|                 <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
 | ||
|                     <img alt="Github"
 | ||
|                          src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
 | ||
|                          style="max-width:100%;"/></a>
 | ||
|                 <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
 | ||
|                     <img alt="Twitter"
 | ||
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | ||
|                          style="max-width:100%;"/></a>
 | ||
|             </p>
 | ||
|             <p>
 | ||
|                 <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/rl/ppo/readme.md" target="_blank">
 | ||
|                     View code on Github</a>
 | ||
|             </p>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-0'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-0'>#</a>
 | ||
|             </div>
 | ||
|             <h1><a href="https://nn.labml.ai/rl/ppo/index.html">近端策略优化-PPO</a></h1>
 | ||
| <p>这是<a href="https://papers.labml.ai/paper/1707.06347">近端策略优化-PPO 的</a> P <a href="https://pytorch.org">yTorch</a> 实现。</p>
 | ||
| <p>PPO 是一种用于强化学习的策略梯度方法。简单的策略梯度方法可以对每个样本(或一组样本)进行一次梯度更新。对单个样本执行多个梯度步骤会导致问题,因为策略偏差太大,从而产生了糟糕的策略。PPO 允许我们尝试使策略接近用于采样数据的策略,从而为每个样本执行多次梯度更新。如果更新的策略与用于采样数据的策略不接近,则通过剪切梯度流来实现此目的。</p>
 | ||
| <p>你可以<a href="https://nn.labml.ai/rl/ppo/experiment.html">在这里</a>找到一个使用它的实验。该实验使用<a href="https://nn.labml.ai/rl/ppo/gae.html">广义优势估计</a>。</p>
 | ||
| <p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/rl/ppo/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><a href="https://app.labml.ai/run/6eff28a0910e11eb9b008db315936e2f"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='footer'>
 | ||
|         <a href="https://papers.labml.ai">Trending Research Papers</a>
 | ||
|         <a href="https://labml.ai">labml.ai</a>
 | ||
|     </div>
 | ||
| </div>
 | ||
| <script src=../../interactive.js?v=1"></script>
 | ||
| <script>
 | ||
|     function handleImages() {
 | ||
|         var images = document.querySelectorAll('p>img')
 | ||
| 
 | ||
|         for (var i = 0; i < images.length; ++i) {
 | ||
|             handleImage(images[i])
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     function handleImage(img) {
 | ||
|         img.parentElement.style.textAlign = 'center'
 | ||
| 
 | ||
|         var modal = document.createElement('div')
 | ||
|         modal.id = 'modal'
 | ||
| 
 | ||
|         var modalContent = document.createElement('div')
 | ||
|         modal.appendChild(modalContent)
 | ||
| 
 | ||
|         var modalImage = document.createElement('img')
 | ||
|         modalContent.appendChild(modalImage)
 | ||
| 
 | ||
|         var span = document.createElement('span')
 | ||
|         span.classList.add('close')
 | ||
|         span.textContent = 'x'
 | ||
|         modal.appendChild(span)
 | ||
| 
 | ||
|         img.onclick = function () {
 | ||
|             console.log('clicked')
 | ||
|             document.body.appendChild(modal)
 | ||
|             modalImage.src = img.src
 | ||
|         }
 | ||
| 
 | ||
|         span.onclick = function () {
 | ||
|             document.body.removeChild(modal)
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     handleImages()
 | ||
| </script>
 | ||
| </body>
 | ||
| </html> | 
