Files
Varuna Jayasiri b05c9e0c57 zh translation
2023-04-02 14:23:40 +05:30
..
2023-04-02 14:23:40 +05:30
2023-04-02 14:23:40 +05:30
2023-04-02 14:23:40 +05:30

<!DOCTYPE html>
<html lang="zh">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="反馈变压器"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/transformers/feedback/readme.html"/>
    <meta property="og:title" content="反馈变压器"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="反馈变压器"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="反馈变压器"/>
    <meta property="og:description" content=""/>

    <title>反馈变压器</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../../pylit.css?v=1">
    <link rel="canonical" href="https://nn.labml.ai/transformers/feedback/readme.html"/>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">

    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="../index.html">transformers</a>
                <a class="parent" href="index.html">feedback</a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/feedback/readme.md" target="_blank">
                    View code on Github</a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
        <div class='docs'>
            <div class='section-link'>
                <a href='#section-0'>#</a>
            </div>
            <h1><a href="https://nn.labml.ai/transformers/feedback/index.html">反馈变压器</a></h1>
<p>这是 <a href="https://pytorch.org">PyTorch 对</a>《使用<a href="https://papers.labml.ai/paper/2002.09402">反馈存储器访问序列变压器中的更高层次表示》一文的 PyT</a> orch 实现。</p>
<p>普通的变压器会并行处理代币。每个变压器层都注意前一层的输出。反馈变压器注意前面步骤中所有层的输出。因此,这会增加重复性,我们需要逐个代币进行处理。这会显著减慢训练速度(大约 5 到 10 倍,具体取决于序列长度)。但是,在预测反馈变换器时,速度更快,因为如果你缓存了内存向量,你可以预测下一个标记。</p>
<p>为了加快训练速度,本文讨论了从短序列长度开始并逐渐增加序列长度的问题。他们还讨论了使用预训练的并行变压器作为起点。</p>
<p>原始反馈变压器不保留所有层的输出。相反,它保留所有图层输出的加权总和。这减少了预测期间用于缓存的内存。这个文件的前半部分实现了这一点。</p>
<p>更新后的反馈变压器在各层之间共享用于计算密钥和值的权重。然后,我们只计算每个步骤的键和值一次,并将其缓存。这个文件的<a href="#shared_kv">后半</a>部分实现了这一点。我们实现了一个自定义 PyTorch 函数来提高性能。</p>
<p>这是<a href="experiment.html">训练代码和一本</a>用于在 Tiny Shakespeare 数据集上训练反馈转换器的笔记本。</p>
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/feedback/experiment.ipynb">Colab 笔记本</a></p>
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/feedback/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>

        </div>
        <div class='code'>
            
        </div>
    </div>
    <div class='footer'>
        <a href="https://papers.labml.ai">Trending Research Papers</a>
        <a href="https://labml.ai">labml.ai</a>
    </div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')

        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }

    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'

        var modal = document.createElement('div')
        modal.id = 'modal'

        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)

        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)

        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)

        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }

        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }

    handleImages()
</script>
</body>
</html>