mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-15 10:11:39 +08:00
<!DOCTYPE html> <html lang="zh"> <head> <meta http-equiv="content-type" content="text/html;charset=utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1.0"/> <meta name="description" content=""/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/> <meta name="twitter:title" content="反馈变压器"/> <meta name="twitter:description" content=""/> <meta name="twitter:site" content="@labmlai"/> <meta name="twitter:creator" content="@labmlai"/> <meta property="og:url" content="https://nn.labml.ai/transformers/feedback/readme.html"/> <meta property="og:title" content="反馈变压器"/> <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/> <meta property="og:site_name" content="反馈变压器"/> <meta property="og:type" content="object"/> <meta property="og:title" content="反馈变压器"/> <meta property="og:description" content=""/> <title>反馈变压器</title> <link rel="shortcut icon" href="/icon.png"/> <link rel="stylesheet" href="../../pylit.css?v=1"> <link rel="canonical" href="https://nn.labml.ai/transformers/feedback/readme.html"/> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous"> <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-4V3HC8HBLH'); </script> </head> <body> <div id='container'> <div id="background"></div> <div class='section'> <div class='docs'> <p> <a class="parent" href="/">home</a> <a class="parent" href="../index.html">transformers</a> <a class="parent" href="index.html">feedback</a> </p> <p> <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank"> <img alt="Github" src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social" style="max-width:100%;"/></a> <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank"> <img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social" style="max-width:100%;"/></a> </p> <p> <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/feedback/readme.md" target="_blank"> View code on Github</a> </p> </div> </div> <div class='section' id='section-0'> <div class='docs'> <div class='section-link'> <a href='#section-0'>#</a> </div> <h1><a href="https://nn.labml.ai/transformers/feedback/index.html">反馈变压器</a></h1> <p>这是 <a href="https://pytorch.org">PyTorch 对</a>《使用<a href="https://papers.labml.ai/paper/2002.09402">反馈存储器访问序列变压器中的更高层次表示》一文的 PyT</a> orch 实现。</p> <p>普通的变压器会并行处理代币。每个变压器层都注意前一层的输出。反馈变压器注意前面步骤中所有层的输出。因此,这会增加重复性,我们需要逐个代币进行处理。这会显著减慢训练速度(大约 5 到 10 倍,具体取决于序列长度)。但是,在预测反馈变换器时,速度更快,因为如果你缓存了内存向量,你可以预测下一个标记。</p> <p>为了加快训练速度,本文讨论了从短序列长度开始并逐渐增加序列长度的问题。他们还讨论了使用预训练的并行变压器作为起点。</p> <p>原始反馈变压器不保留所有层的输出。相反,它保留所有图层输出的加权总和。这减少了预测期间用于缓存的内存。这个文件的前半部分实现了这一点。</p> <p>更新后的反馈变压器在各层之间共享用于计算密钥和值的权重。然后,我们只计算每个步骤的键和值一次,并将其缓存。这个文件的<a href="#shared_kv">后半</a>部分实现了这一点。我们实现了一个自定义 PyTorch 函数来提高性能。</p> <p>这是<a href="experiment.html">训练代码和一本</a>用于在 Tiny Shakespeare 数据集上训练反馈转换器的笔记本。</p> <p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/feedback/experiment.ipynb">Colab 笔记本</a></p> <p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/feedback/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p> </div> <div class='code'> </div> </div> <div class='footer'> <a href="https://papers.labml.ai">Trending Research Papers</a> <a href="https://labml.ai">labml.ai</a> </div> </div> <script src=../../interactive.js?v=1"></script> <script> function handleImages() { var images = document.querySelectorAll('p>img') for (var i = 0; i < images.length; ++i) { handleImage(images[i]) } } function handleImage(img) { img.parentElement.style.textAlign = 'center' var modal = document.createElement('div') modal.id = 'modal' var modalContent = document.createElement('div') modal.appendChild(modalContent) var modalImage = document.createElement('img') modalContent.appendChild(modalImage) var span = document.createElement('span') span.classList.add('close') span.textContent = 'x' modal.appendChild(span) img.onclick = function () { console.log('clicked') document.body.appendChild(modal) modalImage.src = img.src } span.onclick = function () { document.body.removeChild(modal) } } handleImages() </script> </body> </html>