mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-16 02:41:38 +08:00
583 lines
40 KiB
HTML
583 lines
40 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="zh">
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||
<meta name="description" content="一组流行的基于梯度下降的优化器的 PyTorch 实现/教程。目前包括 Adam、AmsGrad 和 RadAM 优化器。"/>
|
||
|
||
<meta name="twitter:card" content="summary"/>
|
||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta name="twitter:title" content="优化器"/>
|
||
<meta name="twitter:description" content="一组流行的基于梯度下降的优化器的 PyTorch 实现/教程。目前包括 Adam、AmsGrad 和 RadAM 优化器。"/>
|
||
<meta name="twitter:site" content="@labmlai"/>
|
||
<meta name="twitter:creator" content="@labmlai"/>
|
||
|
||
<meta property="og:url" content="https://nn.labml.ai/optimizers/index.html"/>
|
||
<meta property="og:title" content="优化器"/>
|
||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta property="og:site_name" content="优化器"/>
|
||
<meta property="og:type" content="object"/>
|
||
<meta property="og:title" content="优化器"/>
|
||
<meta property="og:description" content="一组流行的基于梯度下降的优化器的 PyTorch 实现/教程。目前包括 Adam、AmsGrad 和 RadAM 优化器。"/>
|
||
|
||
<title>优化器</title>
|
||
<link rel="shortcut icon" href="/icon.png"/>
|
||
<link rel="stylesheet" href="../pylit.css?v=1">
|
||
<link rel="canonical" href="https://nn.labml.ai/optimizers/index.html"/>
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-4V3HC8HBLH');
|
||
</script>
|
||
</head>
|
||
<body>
|
||
<div id='container'>
|
||
<div id="background"></div>
|
||
<div class='section'>
|
||
<div class='docs'>
|
||
<p>
|
||
<a class="parent" href="/">home</a>
|
||
<a class="parent" href="index.html">optimizers</a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
|
||
<img alt="Github"
|
||
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
|
||
style="max-width:100%;"/></a>
|
||
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
|
||
<img alt="Twitter"
|
||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||
style="max-width:100%;"/></a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/optimizers/__init__.py" target="_blank">
|
||
View code on Github</a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-0'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-0'>#</a>
|
||
</div>
|
||
<h1>优化器</h1>
|
||
<h2>优化器实现</h2>
|
||
<ul><li><a href="adam.html">亚当优化器</a></li>
|
||
<li><a href="amsgrad.html">amsGrad 优化器</a></li>
|
||
<li><a href="adam_warmup.html">Adam Optimizer 带热身</a></li>
|
||
<li><a href="noam.html">Noam 优化器</a></li>
|
||
<li><a href="radam.html">纠正亚当优化器</a></li>
|
||
<li><a href="ada_belief.html">adaBelief 优化器</a></li></ul>
|
||
<p>此 <a href="mnist_experiment.html">MNIST 示例</a>使用了这些优化器。</p>
|
||
<h2>通用自适应优化器基类和权重衰减</h2>
|
||
<p>这个文件定义了 <em>Adam</em> 的通用基类及其扩展。由于可重用性,基类有助于以最少的代码实现其他优化器。</p>
|
||
<p>我们还为 L2 权重衰减定义了一个特殊的类,这样我们就不必在每个优化器中实现它,并且可以在不更改优化器的情况下轻松扩展到其他权重衰减,例如 L1。</p>
|
||
<p>以下是关于 PyTorch 优化器的一些概念:</p>
|
||
<h3>参数组</h3>
|
||
<p>PyTorch 优化器将参数分组到名为组的集合中。每个组可以有自己的超参数,例如学习率。</p>
|
||
<p>在大多数情况下,只有一组。这是你使用初始化优化器的时候,</p>
|
||
<pre class="highlight lang-python"><code><span></span><span class="n">Optimizer</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span></code></pre>
|
||
<p>在初始化优化器时,可以定义多个参数组:</p>
|
||
<pre class="highlight lang-python"><code><span></span><span class="n">Optimizer</span><span class="p">([{</span><span class="s1">'params'</span><span class="p">:</span> <span class="n">model1</span><span class="o">.</span><span class="n">parameters</span><span class="p">()},</span> <span class="p">{</span><span class="s1">'params'</span><span class="p">:</span> <span class="n">model2</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="s1">'lr'</span><span class="p">:</span> <span class="mi">2</span><span class="p">}])</span></code></pre>
|
||
<p>在这里,我们传递一个组列表。每个组都是一个字典,其参数位于键 “params” 下。您也可以指定任何超参数。如果未定义 hyper 参数,它们将默认为优化程序级别的默认值。</p>
|
||
<p>您可以使用访问(甚至更改)这些组及其超参数<code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span></code>
|
||
。我遇到的大多数学习率计划实现都访问了这个并更改了 “lr”。</p>
|
||
<h3>各州</h3>
|
||
<p>Optimizer 在字典中维护每个参数(张量)的状态(字典)<code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">state</span></code>
|
||
。这是优化器维护指数平均值之类的东西的地方。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">62</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Any</span>
|
||
<span class="lineno">63</span>
|
||
<span class="lineno">64</span><span class="kn">import</span> <span class="nn">torch</span>
|
||
<span class="lineno">65</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||
<span class="lineno">66</span><span class="kn">from</span> <span class="nn">torch.optim.optimizer</span> <span class="kn">import</span> <span class="n">Optimizer</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-1'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-1'>#</a>
|
||
</div>
|
||
<h2><em>Adam</em> 和扩展的基类</h2>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">69</span><span class="k">class</span> <span class="nc">GenericAdaptiveOptimizer</span><span class="p">(</span><span class="n">Optimizer</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-2'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-2'>#</a>
|
||
</div>
|
||
<h3>初始化</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">params</span></code>
|
||
是参数的集合或一组参数组。</li>
|
||
<li><code class="highlight"><span></span><span class="n">defaults</span></code>
|
||
默认超参数的字典</li>
|
||
<li><code class="highlight"><span></span><span class="n">lr</span></code>
|
||
是学习率,<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span></span></li>
|
||
<li><code class="highlight"><span></span><span class="n">betas</span></code>
|
||
是元组<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></li>
|
||
</ul><li><code class="highlight"><span></span><span class="n">eps</span></code>
|
||
是<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">ϵ</span></span></span></span></span></li>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">74</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">defaults</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="n">lr</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">],</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-3'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-3'>#</a>
|
||
</div>
|
||
<p>检查超参数</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">86</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">lr</span><span class="p">:</span>
|
||
<span class="lineno">87</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid learning rate: </span><span class="si">{</span><span class="n">lr</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">88</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">eps</span><span class="p">:</span>
|
||
<span class="lineno">89</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid epsilon value: </span><span class="si">{</span><span class="n">eps</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">90</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">betas</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><</span> <span class="mf">1.0</span><span class="p">:</span>
|
||
<span class="lineno">91</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid beta parameter at index 0: </span><span class="si">{</span><span class="n">betas</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">92</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">betas</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o"><</span> <span class="mf">1.0</span><span class="p">:</span>
|
||
<span class="lineno">93</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid beta parameter at index 1: </span><span class="si">{</span><span class="n">betas</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-4'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-4'>#</a>
|
||
</div>
|
||
<p>将超参数添加到默认值</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">96</span> <span class="n">defaults</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="nb">dict</span><span class="p">(</span><span class="n">lr</span><span class="o">=</span><span class="n">lr</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">))</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-5'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-5'>#</a>
|
||
</div>
|
||
<p>初始化 PyTorch 优化器。这将使用默认的超参数创建参数组</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">99</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">defaults</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-6'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-6'>#</a>
|
||
</div>
|
||
<h3>初始化给定参数张量的状态</h3>
|
||
<p>这应该被代码覆盖,以便初始<code class="highlight"><span></span><span class="n">state</span></code>
|
||
化参数<code class="highlight"><span></span><span class="n">param</span></code>
|
||
。<code class="highlight"><span></span><span class="n">group</span></code>
|
||
是所<code class="highlight"><span></span><span class="n">param</span></code>
|
||
属的参数组字典。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">101</span> <span class="k">def</span> <span class="nf">init_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">param</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-7'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-7'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">108</span> <span class="k">pass</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-8'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-8'>#</a>
|
||
</div>
|
||
<h3>在参数张量上采取优化器步骤</h3>
|
||
<p>这应该被重写并对<code class="highlight"><span></span><span class="n">param</span></code>
|
||
张量采取优化步骤<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span></span>,其中<code class="highlight"><span></span><span class="n">grad</span></code>
|
||
是该参数的梯度<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>,<code class="highlight"><span></span><span class="n">state</span></code>
|
||
是该参数的优化器状态字典,<code class="highlight"><span></span><span class="n">group</span></code>
|
||
也是参数组字典<code class="highlight"><span></span><span class="n">param</span></code>
|
||
所属的。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">110</span> <span class="k">def</span> <span class="nf">step_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-9'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-9'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">119</span> <span class="k">pass</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-10'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-10'>#</a>
|
||
</div>
|
||
<h3>优化器步骤</h3>
|
||
<p>我们创建了一个模板方法,它可以完成每个基于 <em>Adam</em> 的优化器所需要的常用内容。</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">121</span> <span class="nd">@torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">()</span>
|
||
<span class="lineno">122</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">closure</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-11'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-11'>#</a>
|
||
</div>
|
||
<p>计算损失。</p>
|
||
<p>🤔 我不确定你什么时候需要这个。我想如果你定义一个函数来计算损失,做<code class="highlight"><span></span><span class="n">loss</span><span class="o">.</span><span class="n">backward</span></code>
|
||
和返回损失,而不是自己调用它,你可以传递给它<code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span></code>
|
||
。🤷♂️</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">133</span> <span class="n">loss</span> <span class="o">=</span> <span class="kc">None</span>
|
||
<span class="lineno">134</span> <span class="k">if</span> <span class="n">closure</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="lineno">135</span> <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">enable_grad</span><span class="p">():</span>
|
||
<span class="lineno">136</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">closure</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-12'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-12'>#</a>
|
||
</div>
|
||
<p>遍历参数组</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">139</span> <span class="k">for</span> <span class="n">group</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-13'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-13'>#</a>
|
||
</div>
|
||
<p>遍历参数组中的参数</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">141</span> <span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">group</span><span class="p">[</span><span class="s1">'params'</span><span class="p">]:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-14'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-14'>#</a>
|
||
</div>
|
||
<p>如果参数没有渐变,则跳过</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">143</span> <span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="lineno">144</span> <span class="k">continue</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-15'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-15'>#</a>
|
||
</div>
|
||
<p>获取梯度张量</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">146</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">data</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-16'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-16'>#</a>
|
||
</div>
|
||
<p>我们不处理稀疏渐变</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">if</span> <span class="n">grad</span><span class="o">.</span><span class="n">is_sparse</span><span class="p">:</span>
|
||
<span class="lineno">149</span> <span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s1">'GenericAdaptiveOptimizer does not support sparse gradients,'</span>
|
||
<span class="lineno">150</span> <span class="s1">' please consider SparseAdam instead'</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-17'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-17'>#</a>
|
||
</div>
|
||
<p>获取参数的状态</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">153</span> <span class="n">state</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">state</span><span class="p">[</span><span class="n">param</span><span class="p">]</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-18'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-18'>#</a>
|
||
</div>
|
||
<p>如果状态未初始化,则初始化状态</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">156</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">state</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
||
<span class="lineno">157</span> <span class="bp">self</span><span class="o">.</span><span class="n">init_state</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">param</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-19'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-19'>#</a>
|
||
</div>
|
||
<p>对参数采取优化步骤</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">160</span> <span class="bp">self</span><span class="o">.</span><span class="n">step_param</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">grad</span><span class="p">,</span> <span class="n">param</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-20'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-20'>#</a>
|
||
</div>
|
||
<p>返回从闭包计算得出的损失</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">163</span> <span class="k">return</span> <span class="n">loss</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-21'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-21'>#</a>
|
||
</div>
|
||
<h2>L2 重量衰减</h2>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">166</span><span class="k">class</span> <span class="nc">WeightDecay</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-22'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-22'>#</a>
|
||
</div>
|
||
<h3>初始化权重衰减</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">weight_decay</span></code>
|
||
是衰减系数</li>
|
||
<li><code class="highlight"><span></span><span class="n">weight_decouple</span></code>
|
||
是一个标志,指示是将权重衰减添加到梯度还是直接从参数中衰减。如果添加到渐变中,它将通过普通的优化器更新。</li>
|
||
<li><code class="highlight"><span></span><span class="n">absolute</span></code>
|
||
此标志指示权重衰减系数是否为绝对值。当直接对参数执行衰减时,这适用。如果此值为假,则实际衰减为<code class="highlight"><span></span><span class="n">weight_decay</span></code>
|
||
</li>
|
||
<li><code class="highlight"><span></span><span class="n">learning_rate</span></code>
|
||
。</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">171</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">weight_decouple</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">absolute</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-23'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-23'>#</a>
|
||
</div>
|
||
<p>检查超参数</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">184</span> <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">weight_decay</span><span class="p">:</span>
|
||
<span class="lineno">185</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Invalid weight_decay value: </span><span class="si">{</span><span class="n">weight_decay</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
|
||
<span class="lineno">186</span>
|
||
<span class="lineno">187</span> <span class="bp">self</span><span class="o">.</span><span class="n">absolute</span> <span class="o">=</span> <span class="n">absolute</span>
|
||
<span class="lineno">188</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decouple</span> <span class="o">=</span> <span class="n">weight_decouple</span>
|
||
<span class="lineno">189</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span> <span class="o">=</span> <span class="n">weight_decay</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-24'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-24'>#</a>
|
||
</div>
|
||
<p>返回参数组的默认值</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">191</span> <span class="k">def</span> <span class="nf">defaults</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-25'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-25'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">195</span> <span class="k">return</span> <span class="nb">dict</span><span class="p">(</span><span class="n">weight_decay</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-26'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-26'>#</a>
|
||
</div>
|
||
<h3>执行权重衰减并返回梯度</h3>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">197</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">,</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">]):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-27'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-27'>#</a>
|
||
</div>
|
||
<p>如果我们直接对参数进行衰减</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">203</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decouple</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-28'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-28'>#</a>
|
||
</div>
|
||
<p>如果权重衰减系数为绝对值</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">205</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">absolute</span><span class="p">:</span>
|
||
<span class="lineno">206</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-29'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-29'>#</a>
|
||
</div>
|
||
<p>否则,</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">208</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">209</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">group</span><span class="p">[</span><span class="s1">'lr'</span><span class="p">]</span> <span class="o">*</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">])</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-30'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-30'>#</a>
|
||
</div>
|
||
<p>返回未修改的渐变</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">211</span> <span class="k">return</span> <span class="n">grad</span>
|
||
<span class="lineno">212</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">213</span> <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">]</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-31'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-31'>#</a>
|
||
</div>
|
||
<p>将权重衰减添加到渐变并返回修改后的渐变</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">215</span> <span class="k">return</span> <span class="n">grad</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">])</span>
|
||
<span class="lineno">216</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">217</span> <span class="k">return</span> <span class="n">grad</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='footer'>
|
||
<a href="https://papers.labml.ai">Trending Research Papers</a>
|
||
<a href="https://labml.ai">labml.ai</a>
|
||
</div>
|
||
</div>
|
||
<script src=../interactive.js?v=1"></script>
|
||
<script>
|
||
function handleImages() {
|
||
var images = document.querySelectorAll('p>img')
|
||
|
||
for (var i = 0; i < images.length; ++i) {
|
||
handleImage(images[i])
|
||
}
|
||
}
|
||
|
||
function handleImage(img) {
|
||
img.parentElement.style.textAlign = 'center'
|
||
|
||
var modal = document.createElement('div')
|
||
modal.id = 'modal'
|
||
|
||
var modalContent = document.createElement('div')
|
||
modal.appendChild(modalContent)
|
||
|
||
var modalImage = document.createElement('img')
|
||
modalContent.appendChild(modalImage)
|
||
|
||
var span = document.createElement('span')
|
||
span.classList.add('close')
|
||
span.textContent = 'x'
|
||
modal.appendChild(span)
|
||
|
||
img.onclick = function () {
|
||
console.log('clicked')
|
||
document.body.appendChild(modal)
|
||
modalImage.src = img.src
|
||
}
|
||
|
||
span.onclick = function () {
|
||
document.body.removeChild(modal)
|
||
}
|
||
}
|
||
|
||
handleImages()
|
||
</script>
|
||
</body>
|
||
</html> |