Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

273 lines
20 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This is a tutorial/implementation of Noam optimizer. Noam optimizer has a warm-up period and then an exponentially decaying learning rate."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Noam optimizer from Attention is All You Need paper"/>
<meta name="twitter:description" content="This is a tutorial/implementation of Noam optimizer. Noam optimizer has a warm-up period and then an exponentially decaying learning rate."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/optimizers/noam.html"/>
<meta property="og:title" content="Noam optimizer from Attention is All You Need paper"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Noam optimizer from Attention is All You Need paper"/>
<meta property="og:description" content="This is a tutorial/implementation of Noam optimizer. Noam optimizer has a warm-up period and then an exponentially decaying learning rate."/>
<title>Noam optimizer from Attention is All You Need paper</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/optimizers/noam.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">optimizers</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/optimizers/noam.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Noam Optimizer</h1>
<p>This is the <a href="https://pytorch.org">PyTorch</a> implementation of optimizer introduced in the paper
<a href="https://arxiv.org/abs/1706.03762">Attention Is All You Need</a>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">14</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span>
<span class="lineno">15</span>
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers</span> <span class="kn">import</span> <span class="n">WeightDecay</span>
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers.amsgrad</span> <span class="kn">import</span> <span class="n">AMSGrad</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Noam Optimizer</h2>
<p>This class extends from Adam optimizer defined in <a href="adam.html"><code>adam.py</code></a>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">20</span><span class="k">class</span> <span class="nc">Noam</span><span class="p">(</span><span class="n">AMSGrad</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<h3>Initialize the optimizer</h3>
<ul>
<li><code>params</code> is the list of parameters</li>
<li><code>lr</code> is the learning rate $\alpha$</li>
<li><code>betas</code> is a tuple of ($\beta_1$, $\beta_2$)</li>
<li><code>eps</code> is $\hat{\epsilon}$ or $\epsilon$ based on <code>optimized_update</code></li>
<li><code>weight_decay</code> is an instance of class <code>WeightDecay</code> defined in <a href="index.html"><code>__init__.py</code></a></li>
<li>&lsquo;optimized_update&rsquo; is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$</li>
<li><code>amsgrad</code> is a flag indicating whether to use AMSGrad or fallback to plain Adam</li>
<li><code>warmup</code> number of warmup steps</li>
<li><code>d_model</code> model size; i.e. number of dimensions in the transformer</li>
<li><code>defaults</code> is a dictionary of default for group values.
This is useful when you want to extend the class <code>AdamWarmup</code>.</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">27</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mf">1e-3</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">),</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-16</span><span class="p">,</span>
<span class="lineno">28</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="n">WeightDecay</span> <span class="o">=</span> <span class="n">WeightDecay</span><span class="p">(),</span>
<span class="lineno">29</span> <span class="n">optimized_update</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="lineno">30</span> <span class="n">amsgrad</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="lineno">31</span> <span class="n">warmup</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">d_model</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">defaults</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">defaults</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">if</span> <span class="n">defaults</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">defaults</span>
<span class="lineno">50</span> <span class="n">defaults</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="nb">dict</span><span class="p">(</span><span class="n">warmup</span><span class="o">=</span><span class="n">warmup</span><span class="p">))</span>
<span class="lineno">51</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="p">,</span> <span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">,</span> <span class="n">optimized_update</span><span class="p">,</span> <span class="n">amsgrad</span><span class="p">,</span> <span class="n">defaults</span><span class="p">)</span>
<span class="lineno">52</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_model</span> <span class="o">=</span> <span class="n">d_model</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<h3>Get learning-rate</h3>
<p>
<script type="math/tex; mode=display">\alpha \frac{1}{\sqrt{d_{model}}} \min \bigg(\frac{1}{\sqrt{t}}, \frac{t}{w^{3/2}}\bigg)</script>
where $w$ is the number of warmup steps.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="k">def</span> <span class="nf">get_lr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">]):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>
<script type="math/tex; mode=display">\min \bigg(\frac{1}{\sqrt{t}}, \frac{t}{w^{3/2}}\bigg)</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="n">factor</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">state</span><span class="p">[</span><span class="s1">&#39;step&#39;</span><span class="p">]</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">),</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;step&#39;</span><span class="p">]</span> <span class="o">*</span> <span class="n">group</span><span class="p">[</span><span class="s1">&#39;warmup&#39;</span><span class="p">]</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">1.5</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>
<script type="math/tex; mode=display">\alpha \frac{1}{\sqrt{d_{model}}} \min \bigg(\frac{1}{\sqrt{t}}, \frac{t}{w^{3/2}}\bigg)</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">64</span> <span class="k">return</span> <span class="n">group</span><span class="p">[</span><span class="s1">&#39;lr&#39;</span><span class="p">]</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_model</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span> <span class="o">*</span> <span class="n">factor</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<h3>Plot learning rate for different warmups and model sizes</h3>
<p><img alt="Plot of learning rate" src="noam_lr.png" /></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">67</span><span class="k">def</span> <span class="nf">_test_noam_lr</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">73</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="lineno">74</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="lineno">75</span> <span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
<span class="lineno">76</span>
<span class="lineno">77</span> <span class="n">model</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="lineno">78</span> <span class="n">opts</span> <span class="o">=</span> <span class="p">[</span><span class="n">Noam</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">d_model</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="mi">4000</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="lineno">79</span> <span class="n">Noam</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">d_model</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="mi">8000</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="lineno">80</span> <span class="n">Noam</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">d_model</span><span class="o">=</span><span class="mi">2048</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="mi">2000</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mi">1</span><span class="p">)]</span>
<span class="lineno">81</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20000</span><span class="p">),</span> <span class="p">[[</span><span class="n">opt</span><span class="o">.</span><span class="n">get_lr</span><span class="p">({</span><span class="s1">&#39;step&#39;</span><span class="p">:</span> <span class="n">i</span><span class="p">},</span> <span class="n">opt</span><span class="o">.</span><span class="n">defaults</span><span class="p">)</span> <span class="k">for</span> <span class="n">opt</span> <span class="ow">in</span> <span class="n">opts</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20000</span><span class="p">)])</span>
<span class="lineno">82</span> <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="s2">&quot;512:4000&quot;</span><span class="p">,</span> <span class="s2">&quot;512:8000&quot;</span><span class="p">,</span> <span class="s2">&quot;2048:2000&quot;</span><span class="p">])</span>
<span class="lineno">83</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Learning Rate&quot;</span><span class="p">)</span>
<span class="lineno">84</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="lineno">85</span>
<span class="lineno">86</span>
<span class="lineno">87</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">88</span> <span class="n">_test_noam_lr</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>