mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
435 lines
33 KiB
HTML
435 lines
33 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
|
<meta name="description" content="This implements a configurable module for optimizers."/>
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta name="twitter:title" content="Configurable optimizer module"/>
|
|
<meta name="twitter:description" content="This implements a configurable module for optimizers."/>
|
|
<meta name="twitter:site" content="@labmlai"/>
|
|
<meta name="twitter:creator" content="@labmlai"/>
|
|
|
|
<meta property="og:url" content="https://nn.labml.ai/optimizers/configs.html"/>
|
|
<meta property="og:title" content="Configurable optimizer module"/>
|
|
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta property="og:site_name" content="LabML Neural Networks"/>
|
|
<meta property="og:type" content="object"/>
|
|
<meta property="og:title" content="Configurable optimizer module"/>
|
|
<meta property="og:description" content="This implements a configurable module for optimizers."/>
|
|
|
|
<title>Configurable optimizer module</title>
|
|
<link rel="shortcut icon" href="/icon.png"/>
|
|
<link rel="stylesheet" href="../pylit.css">
|
|
<link rel="canonical" href="https://nn.labml.ai/optimizers/configs.html"/>
|
|
<!-- Global site tag (gtag.js) - Google Analytics -->
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
|
|
function gtag() {
|
|
dataLayer.push(arguments);
|
|
}
|
|
|
|
gtag('js', new Date());
|
|
|
|
gtag('config', 'G-4V3HC8HBLH');
|
|
</script>
|
|
</head>
|
|
<body>
|
|
<div id='container'>
|
|
<div id="background"></div>
|
|
<div class='section'>
|
|
<div class='docs'>
|
|
<p>
|
|
<a class="parent" href="/">home</a>
|
|
<a class="parent" href="index.html">optimizers</a>
|
|
</p>
|
|
<p>
|
|
|
|
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/optimizers/configs.py">
|
|
<img alt="Github"
|
|
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://twitter.com/labmlai"
|
|
rel="nofollow">
|
|
<img alt="Twitter"
|
|
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
|
style="max-width:100%;"/></a>
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-0'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-0'>#</a>
|
|
</div>
|
|
<h1>Configurable Optimizer</h1>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">10</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Tuple</span>
|
|
<span class="lineno">11</span>
|
|
<span class="lineno">12</span><span class="kn">import</span> <span class="nn">torch</span>
|
|
<span class="lineno">13</span>
|
|
<span class="lineno">14</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">BaseConfigs</span><span class="p">,</span> <span class="n">option</span><span class="p">,</span> <span class="n">meta_config</span>
|
|
<span class="lineno">15</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers</span> <span class="kn">import</span> <span class="n">WeightDecay</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-1'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-1'>#</a>
|
|
</div>
|
|
<p><a id="OptimizerConfigs"></p>
|
|
<h2>Optimizer Configurations</h2>
|
|
<p></a></p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">18</span><span class="k">class</span> <span class="nc">OptimizerConfigs</span><span class="p">(</span><span class="n">BaseConfigs</span><span class="p">):</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-2'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-2'>#</a>
|
|
</div>
|
|
<p>Optimizer</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">26</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-3'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-3'>#</a>
|
|
</div>
|
|
<p>Weight decay</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">29</span> <span class="n">weight_decay_obj</span><span class="p">:</span> <span class="n">WeightDecay</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-4'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-4'>#</a>
|
|
</div>
|
|
<p>Whether weight decay is decoupled;
|
|
i.e. weight decay is not added to gradients</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">32</span> <span class="n">weight_decouple</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-5'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-5'>#</a>
|
|
</div>
|
|
<p>Weight decay</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">34</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-6'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-6'>#</a>
|
|
</div>
|
|
<p>Whether weight decay is absolute or should be multiplied by learning rate</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">36</span> <span class="n">weight_decay_absolute</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-7'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-7'>#</a>
|
|
</div>
|
|
<p>Whether the adam update is optimized (different epsilon)</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">39</span> <span class="n">optimized_adam_update</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-8'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-8'>#</a>
|
|
</div>
|
|
<p>Parameters to be optimized</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">42</span> <span class="n">parameters</span><span class="p">:</span> <span class="nb">any</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-9'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-9'>#</a>
|
|
</div>
|
|
<p>Learning rate $\alpha$</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">45</span> <span class="n">learning_rate</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-10'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-10'>#</a>
|
|
</div>
|
|
<p>Beta values $(\beta_1, \beta_2)$ for Adam</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">47</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-11'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-11'>#</a>
|
|
</div>
|
|
<p>Epsilon $\epsilon$ for adam</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-08</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-12'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-12'>#</a>
|
|
</div>
|
|
<p>Momentum for SGD</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-13'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-13'>#</a>
|
|
</div>
|
|
<p>Whether to use AMSGrad</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">amsgrad</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-14'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-14'>#</a>
|
|
</div>
|
|
<p>Number of warmup optimizer steps</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">57</span> <span class="n">warmup</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2_000</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-15'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-15'>#</a>
|
|
</div>
|
|
<p>Total number of optimizer steps (for cosine decay)</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">59</span> <span class="n">total_steps</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mf">1e10</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-16'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-16'>#</a>
|
|
</div>
|
|
<p>Whether to degenerate to SGD in AdaBelief</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">62</span> <span class="n">degenerate_to_sgd</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-17'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-17'>#</a>
|
|
</div>
|
|
<p>Whether to use Rectified Adam in AdaBelief</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">65</span> <span class="n">rectify</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-18'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-18'>#</a>
|
|
</div>
|
|
<p>Model embedding size for Noam optimizer</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">68</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-19'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-19'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">70</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="lineno">71</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">_primary</span><span class="o">=</span><span class="s1">'optimizer'</span><span class="p">)</span>
|
|
<span class="lineno">72</span>
|
|
<span class="lineno">73</span>
|
|
<span class="lineno">74</span><span class="n">meta_config</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">parameters</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-20'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-20'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">77</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="s1">'L2'</span><span class="p">)</span>
|
|
<span class="lineno">78</span><span class="k">def</span> <span class="nf">_weight_decay</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">79</span> <span class="k">return</span> <span class="n">WeightDecay</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">weight_decouple</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">weight_decay_absolute</span><span class="p">)</span>
|
|
<span class="lineno">80</span>
|
|
<span class="lineno">81</span>
|
|
<span class="lineno">82</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'SGD'</span><span class="p">)</span>
|
|
<span class="lineno">83</span><span class="k">def</span> <span class="nf">_sgd_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">84</span> <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span>
|
|
<span class="lineno">85</span>
|
|
<span class="lineno">86</span>
|
|
<span class="lineno">87</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'Adam'</span><span class="p">)</span>
|
|
<span class="lineno">88</span><span class="k">def</span> <span class="nf">_adam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">89</span> <span class="k">if</span> <span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">:</span>
|
|
<span class="lineno">90</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.amsgrad</span> <span class="kn">import</span> <span class="n">AMSGrad</span>
|
|
<span class="lineno">91</span> <span class="k">return</span> <span class="n">AMSGrad</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">92</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">93</span> <span class="n">optimized_update</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">optimized_adam_update</span><span class="p">,</span>
|
|
<span class="lineno">94</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">)</span>
|
|
<span class="lineno">95</span> <span class="k">else</span><span class="p">:</span>
|
|
<span class="lineno">96</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam</span> <span class="kn">import</span> <span class="n">Adam</span>
|
|
<span class="lineno">97</span> <span class="k">return</span> <span class="n">Adam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">98</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">99</span> <span class="n">optimized_update</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">optimized_adam_update</span><span class="p">,</span>
|
|
<span class="lineno">100</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">)</span>
|
|
<span class="lineno">101</span>
|
|
<span class="lineno">102</span>
|
|
<span class="lineno">103</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'AdamW'</span><span class="p">)</span>
|
|
<span class="lineno">104</span><span class="k">def</span> <span class="nf">_adam_warmup_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">105</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam_warmup</span> <span class="kn">import</span> <span class="n">AdamWarmup</span>
|
|
<span class="lineno">106</span> <span class="k">return</span> <span class="n">AdamWarmup</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">107</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">108</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">warmup</span><span class="p">)</span>
|
|
<span class="lineno">109</span>
|
|
<span class="lineno">110</span>
|
|
<span class="lineno">111</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'RAdam'</span><span class="p">)</span>
|
|
<span class="lineno">112</span><span class="k">def</span> <span class="nf">_radam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">113</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.radam</span> <span class="kn">import</span> <span class="n">RAdam</span>
|
|
<span class="lineno">114</span> <span class="k">return</span> <span class="n">RAdam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">115</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">116</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span>
|
|
<span class="lineno">117</span> <span class="n">degenerated_to_sgd</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">degenerate_to_sgd</span><span class="p">)</span>
|
|
<span class="lineno">118</span>
|
|
<span class="lineno">119</span>
|
|
<span class="lineno">120</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'AdaBelief'</span><span class="p">)</span>
|
|
<span class="lineno">121</span><span class="k">def</span> <span class="nf">_ada_belief_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">122</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.ada_belief</span> <span class="kn">import</span> <span class="n">AdaBelief</span>
|
|
<span class="lineno">123</span> <span class="k">return</span> <span class="n">AdaBelief</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">124</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">125</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span>
|
|
<span class="lineno">126</span> <span class="n">degenerate_to_sgd</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">degenerate_to_sgd</span><span class="p">,</span>
|
|
<span class="lineno">127</span> <span class="n">rectify</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">rectify</span><span class="p">)</span>
|
|
<span class="lineno">128</span>
|
|
<span class="lineno">129</span>
|
|
<span class="lineno">130</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'Noam'</span><span class="p">)</span>
|
|
<span class="lineno">131</span><span class="k">def</span> <span class="nf">_noam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">132</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.noam</span> <span class="kn">import</span> <span class="n">Noam</span>
|
|
<span class="lineno">133</span> <span class="k">return</span> <span class="n">Noam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">134</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">135</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">warmup</span><span class="p">,</span>
|
|
<span class="lineno">136</span> <span class="n">d_model</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">)</span>
|
|
<span class="lineno">137</span>
|
|
<span class="lineno">138</span>
|
|
<span class="lineno">139</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'AdamWarmupCosineDecay'</span><span class="p">)</span>
|
|
<span class="lineno">140</span><span class="k">def</span> <span class="nf">_noam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
|
|
<span class="lineno">141</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam_warmup_cosine_decay</span> <span class="kn">import</span> <span class="n">AdamWarmupCosineDecay</span>
|
|
<span class="lineno">142</span> <span class="k">return</span> <span class="n">AdamWarmupCosineDecay</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
|
|
<span class="lineno">143</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
|
|
<span class="lineno">144</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span>
|
|
<span class="lineno">145</span> <span class="n">warmup</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">warmup</span><span class="p">,</span> <span class="n">total_steps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">total_steps</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
|
</script>
|
|
<!-- MathJax configuration -->
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
tex2jax: {
|
|
inlineMath: [ ['$','$'] ],
|
|
displayMath: [ ['$$','$$'] ],
|
|
processEscapes: true,
|
|
processEnvironments: true
|
|
},
|
|
// Center justify equations in code and markdown cells. Elsewhere
|
|
// we use CSS to left justify single line equations in code cells.
|
|
displayAlign: 'center',
|
|
"HTML-CSS": { fonts: ["TeX"] }
|
|
});
|
|
</script>
|
|
<script>
|
|
function handleImages() {
|
|
var images = document.querySelectorAll('p>img')
|
|
|
|
console.log(images);
|
|
for (var i = 0; i < images.length; ++i) {
|
|
handleImage(images[i])
|
|
}
|
|
}
|
|
|
|
function handleImage(img) {
|
|
img.parentElement.style.textAlign = 'center'
|
|
|
|
var modal = document.createElement('div')
|
|
modal.id = 'modal'
|
|
|
|
var modalContent = document.createElement('div')
|
|
modal.appendChild(modalContent)
|
|
|
|
var modalImage = document.createElement('img')
|
|
modalContent.appendChild(modalImage)
|
|
|
|
var span = document.createElement('span')
|
|
span.classList.add('close')
|
|
span.textContent = 'x'
|
|
modal.appendChild(span)
|
|
|
|
img.onclick = function () {
|
|
console.log('clicked')
|
|
document.body.appendChild(modal)
|
|
modalImage.src = img.src
|
|
}
|
|
|
|
span.onclick = function () {
|
|
document.body.removeChild(modal)
|
|
}
|
|
}
|
|
|
|
handleImages()
|
|
</script>
|
|
</body>
|
|
</html> |