Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

639 lines
54 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This experiment generates MNIST images using multi-layer perceptron."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Generative Adversarial Networks experiment with MNIST"/>
<meta name="twitter:description" content="This experiment generates MNIST images using multi-layer perceptron."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/gan/original/experiment.html"/>
<meta property="og:title" content="Generative Adversarial Networks experiment with MNIST"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Generative Adversarial Networks experiment with MNIST"/>
<meta property="og:description" content="This experiment generates MNIST images using multi-layer perceptron."/>
<title>Generative Adversarial Networks experiment with MNIST</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/gan/original/experiment.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">gan</a>
<a class="parent" href="index.html">original</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/gan/original/experiment.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Generative Adversarial Networks experiment with MNIST</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">10</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span>
<span class="lineno">11</span>
<span class="lineno">12</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">13</span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="lineno">14</span><span class="kn">import</span> <span class="nn">torch.utils.data</span>
<span class="lineno">15</span><span class="kn">from</span> <span class="nn">torchvision</span> <span class="kn">import</span> <span class="n">transforms</span>
<span class="lineno">16</span>
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">tracker</span><span class="p">,</span> <span class="n">monit</span><span class="p">,</span> <span class="n">experiment</span>
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span><span class="p">,</span> <span class="n">calculate</span>
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_helpers.datasets.mnist</span> <span class="kn">import</span> <span class="n">MNISTConfigs</span>
<span class="lineno">20</span><span class="kn">from</span> <span class="nn">labml_helpers.device</span> <span class="kn">import</span> <span class="n">DeviceConfigs</span>
<span class="lineno">21</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">labml_helpers.optimizer</span> <span class="kn">import</span> <span class="n">OptimizerConfigs</span>
<span class="lineno">23</span><span class="kn">from</span> <span class="nn">labml_helpers.train_valid</span> <span class="kn">import</span> <span class="n">TrainValidConfigs</span><span class="p">,</span> <span class="n">hook_model_outputs</span><span class="p">,</span> <span class="n">BatchIndex</span>
<span class="lineno">24</span><span class="kn">from</span> <span class="nn">labml_nn.gan.original</span> <span class="kn">import</span> <span class="n">DiscriminatorLogitsLoss</span><span class="p">,</span> <span class="n">GeneratorLogitsLoss</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">27</span><span class="k">def</span> <span class="nf">weights_init</span><span class="p">(</span><span class="n">m</span><span class="p">):</span>
<span class="lineno">28</span> <span class="n">classname</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
<span class="lineno">29</span> <span class="k">if</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">&#39;Linear&#39;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="lineno">30</span> <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">)</span>
<span class="lineno">31</span> <span class="k">elif</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">&#39;BatchNorm&#39;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="lineno">32</span> <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">)</span>
<span class="lineno">33</span> <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">constant_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<h3>Simple MLP Generator</h3>
<p>This has three linear layers of increasing size with <code>LeakyReLU</code> activations.
The final layer has a $tanh$ activation.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">36</span><span class="k">class</span> <span class="nc">Generator</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">44</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">45</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="lineno">46</span> <span class="n">layer_sizes</span> <span class="o">=</span> <span class="p">[</span><span class="mi">256</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">1024</span><span class="p">]</span>
<span class="lineno">47</span> <span class="n">layers</span> <span class="o">=</span> <span class="p">[]</span>
<span class="lineno">48</span> <span class="n">d_prev</span> <span class="o">=</span> <span class="mi">100</span>
<span class="lineno">49</span> <span class="k">for</span> <span class="n">size</span> <span class="ow">in</span> <span class="n">layer_sizes</span><span class="p">:</span>
<span class="lineno">50</span> <span class="n">layers</span> <span class="o">=</span> <span class="n">layers</span> <span class="o">+</span> <span class="p">[</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_prev</span><span class="p">,</span> <span class="n">size</span><span class="p">),</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">)]</span>
<span class="lineno">51</span> <span class="n">d_prev</span> <span class="o">=</span> <span class="n">size</span>
<span class="lineno">52</span>
<span class="lineno">53</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_prev</span><span class="p">,</span> <span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">),</span> <span class="n">nn</span><span class="o">.</span><span class="n">Tanh</span><span class="p">())</span>
<span class="lineno">54</span>
<span class="lineno">55</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">weights_init</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">57</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="lineno">58</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">28</span><span class="p">,</span> <span class="mi">28</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<h3>Simple MLP Discriminator</h3>
<p>This has three linear layers of decreasing size with <code>LeakyReLU</code> activations.
The final layer has a single output that gives the logit of whether input
is real or fake. You can get the probability by calculating the sigmoid of it.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">61</span><span class="k">class</span> <span class="nc">Discriminator</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">71</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="lineno">72</span> <span class="n">layer_sizes</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1024</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">256</span><span class="p">]</span>
<span class="lineno">73</span> <span class="n">layers</span> <span class="o">=</span> <span class="p">[]</span>
<span class="lineno">74</span> <span class="n">d_prev</span> <span class="o">=</span> <span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span>
<span class="lineno">75</span> <span class="k">for</span> <span class="n">size</span> <span class="ow">in</span> <span class="n">layer_sizes</span><span class="p">:</span>
<span class="lineno">76</span> <span class="n">layers</span> <span class="o">=</span> <span class="n">layers</span> <span class="o">+</span> <span class="p">[</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_prev</span><span class="p">,</span> <span class="n">size</span><span class="p">),</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">)]</span>
<span class="lineno">77</span> <span class="n">d_prev</span> <span class="o">=</span> <span class="n">size</span>
<span class="lineno">78</span>
<span class="lineno">79</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_prev</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="lineno">80</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">weights_init</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="lineno">83</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<h2>Configurations</h2>
<p>This extends MNIST configurations to get the data loaders and Training and validation loop
configurations to simplify our implementation.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">86</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">MNISTConfigs</span><span class="p">,</span> <span class="n">TrainValidConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">94</span> <span class="n">device</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">DeviceConfigs</span><span class="p">()</span>
<span class="lineno">95</span> <span class="n">dataset_transforms</span> <span class="o">=</span> <span class="s1">&#39;mnist_gan_transforms&#39;</span>
<span class="lineno">96</span> <span class="n">epochs</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span>
<span class="lineno">97</span>
<span class="lineno">98</span> <span class="n">is_save_models</span> <span class="o">=</span> <span class="kc">True</span>
<span class="lineno">99</span> <span class="n">discriminator</span><span class="p">:</span> <span class="n">Module</span> <span class="o">=</span> <span class="s1">&#39;mlp&#39;</span>
<span class="lineno">100</span> <span class="n">generator</span><span class="p">:</span> <span class="n">Module</span> <span class="o">=</span> <span class="s1">&#39;mlp&#39;</span>
<span class="lineno">101</span> <span class="n">generator_optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span>
<span class="lineno">102</span> <span class="n">discriminator_optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span>
<span class="lineno">103</span> <span class="n">generator_loss</span><span class="p">:</span> <span class="n">GeneratorLogitsLoss</span> <span class="o">=</span> <span class="s1">&#39;original&#39;</span>
<span class="lineno">104</span> <span class="n">discriminator_loss</span><span class="p">:</span> <span class="n">DiscriminatorLogitsLoss</span> <span class="o">=</span> <span class="s1">&#39;original&#39;</span>
<span class="lineno">105</span> <span class="n">label_smoothing</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.2</span>
<span class="lineno">106</span> <span class="n">discriminator_k</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Initializations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">108</span> <span class="k">def</span> <span class="nf">init</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">112</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_modules</span> <span class="o">=</span> <span class="p">[]</span>
<span class="lineno">113</span>
<span class="lineno">114</span> <span class="n">hook_model_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">,</span> <span class="s1">&#39;generator&#39;</span><span class="p">)</span>
<span class="lineno">115</span> <span class="n">hook_model_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator</span><span class="p">,</span> <span class="s1">&#39;discriminator&#39;</span><span class="p">)</span>
<span class="lineno">116</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;loss.generator.*&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="lineno">117</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;loss.discriminator.*&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="lineno">118</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_image</span><span class="p">(</span><span class="s2">&quot;generated&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="mi">1</span> <span class="o">/</span> <span class="mi">100</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>
<script type="math/tex; mode=display">z \sim p(z)</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">120</span> <span class="k">def</span> <span class="nf">sample_z</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">124</span> <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="mi">100</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Take a training step</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">126</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">batch_idx</span><span class="p">:</span> <span class="n">BatchIndex</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Set model states</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">132</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">)</span>
<span class="lineno">133</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Get MNIST images</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">136</span> <span class="n">data</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Increment step in training mode</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">139</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
<span class="lineno">140</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add_global_step</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Train the discriminator</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">143</span> <span class="k">with</span> <span class="n">monit</span><span class="o">.</span><span class="n">section</span><span class="p">(</span><span class="s2">&quot;discriminator&quot;</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Get discriminator loss</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">145</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">calc_discriminator_loss</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Train</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
<span class="lineno">149</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator_optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="lineno">150</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="lineno">151</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
<span class="lineno">152</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;discriminator&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator</span><span class="p">)</span>
<span class="lineno">153</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator_optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Train the generator once in every <code>discriminator_k</code></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">156</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_interval</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">discriminator_k</span><span class="p">):</span>
<span class="lineno">157</span> <span class="k">with</span> <span class="n">monit</span><span class="o">.</span><span class="n">section</span><span class="p">(</span><span class="s2">&quot;generator&quot;</span><span class="p">):</span>
<span class="lineno">158</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">calc_generator_loss</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Train</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">161</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
<span class="lineno">162</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator_optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="lineno">163</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="lineno">164</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
<span class="lineno">165</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;generator&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">)</span>
<span class="lineno">166</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator_optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
<span class="lineno">167</span>
<span class="lineno">168</span> <span class="n">tracker</span><span class="o">.</span><span class="n">save</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Calculate discriminator loss</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">170</span> <span class="k">def</span> <span class="nf">calc_discriminator_loss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">174</span> <span class="n">latent</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sample_z</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="lineno">175</span> <span class="n">logits_true</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="lineno">176</span> <span class="n">logits_false</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">(</span><span class="n">latent</span><span class="p">)</span><span class="o">.</span><span class="n">detach</span><span class="p">())</span>
<span class="lineno">177</span> <span class="n">loss_true</span><span class="p">,</span> <span class="n">loss_false</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator_loss</span><span class="p">(</span><span class="n">logits_true</span><span class="p">,</span> <span class="n">logits_false</span><span class="p">)</span>
<span class="lineno">178</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">loss_true</span> <span class="o">+</span> <span class="n">loss_false</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Log stuff</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">181</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;loss.discriminator.true.&quot;</span><span class="p">,</span> <span class="n">loss_true</span><span class="p">)</span>
<span class="lineno">182</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;loss.discriminator.false.&quot;</span><span class="p">,</span> <span class="n">loss_false</span><span class="p">)</span>
<span class="lineno">183</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;loss.discriminator.&quot;</span><span class="p">,</span> <span class="n">loss</span><span class="p">)</span>
<span class="lineno">184</span>
<span class="lineno">185</span> <span class="k">return</span> <span class="n">loss</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>Calculate generator loss</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">187</span> <span class="k">def</span> <span class="nf">calc_generator_loss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">191</span> <span class="n">latent</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sample_z</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span>
<span class="lineno">192</span> <span class="n">generated_images</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">(</span><span class="n">latent</span><span class="p">)</span>
<span class="lineno">193</span> <span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">discriminator</span><span class="p">(</span><span class="n">generated_images</span><span class="p">)</span>
<span class="lineno">194</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator_loss</span><span class="p">(</span><span class="n">logits</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<p>Log stuff</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">197</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;generated&#39;</span><span class="p">,</span> <span class="n">generated_images</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">6</span><span class="p">])</span>
<span class="lineno">198</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;loss.generator.&quot;</span><span class="p">,</span> <span class="n">loss</span><span class="p">)</span>
<span class="lineno">199</span>
<span class="lineno">200</span> <span class="k">return</span> <span class="n">loss</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">205</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">dataset_transforms</span><span class="p">)</span>
<span class="lineno">206</span><span class="k">def</span> <span class="nf">mnist_gan_transforms</span><span class="p">():</span>
<span class="lineno">207</span> <span class="k">return</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="lineno">208</span> <span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="lineno">209</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,))</span>
<span class="lineno">210</span> <span class="p">])</span>
<span class="lineno">211</span>
<span class="lineno">212</span>
<span class="lineno">213</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">discriminator_optimizer</span><span class="p">)</span>
<span class="lineno">214</span><span class="k">def</span> <span class="nf">_discriminator_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span>
<span class="lineno">215</span> <span class="n">opt_conf</span> <span class="o">=</span> <span class="n">OptimizerConfigs</span><span class="p">()</span>
<span class="lineno">216</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">optimizer</span> <span class="o">=</span> <span class="s1">&#39;Adam&#39;</span>
<span class="lineno">217</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">discriminator</span><span class="o">.</span><span class="n">parameters</span><span class="p">()</span>
<span class="lineno">218</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">2.5e-4</span></pre></div>
</div>
</div>
<div class='section' id='section-30'>
<div class='docs'>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Setting exponent decay rate for first moment of gradient,
$\beta_1$ to <code>0.5</code> is important.
Default of <code>0.9</code> fails.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">222</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">betas</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">)</span>
<span class="lineno">223</span> <span class="k">return</span> <span class="n">opt_conf</span></pre></div>
</div>
</div>
<div class='section' id='section-31'>
<div class='docs'>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">226</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">generator_optimizer</span><span class="p">)</span>
<span class="lineno">227</span><span class="k">def</span> <span class="nf">_generator_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span>
<span class="lineno">228</span> <span class="n">opt_conf</span> <span class="o">=</span> <span class="n">OptimizerConfigs</span><span class="p">()</span>
<span class="lineno">229</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">optimizer</span> <span class="o">=</span> <span class="s1">&#39;Adam&#39;</span>
<span class="lineno">230</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">generator</span><span class="o">.</span><span class="n">parameters</span><span class="p">()</span>
<span class="lineno">231</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">2.5e-4</span></pre></div>
</div>
</div>
<div class='section' id='section-32'>
<div class='docs'>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Setting exponent decay rate for first moment of gradient,
$\beta_1$ to <code>0.5</code> is important.
Default of <code>0.9</code> fails.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">235</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">betas</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">)</span>
<span class="lineno">236</span> <span class="k">return</span> <span class="n">opt_conf</span>
<span class="lineno">237</span>
<span class="lineno">238</span>
<span class="lineno">239</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">generator</span><span class="p">,</span> <span class="s1">&#39;mlp&#39;</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">Generator</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span>
<span class="lineno">240</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">discriminator</span><span class="p">,</span> <span class="s1">&#39;mlp&#39;</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">Discriminator</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span>
<span class="lineno">241</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">generator_loss</span><span class="p">,</span> <span class="s1">&#39;original&#39;</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">GeneratorLogitsLoss</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">label_smoothing</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span>
<span class="lineno">242</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">discriminator_loss</span><span class="p">,</span> <span class="s1">&#39;original&#39;</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">DiscriminatorLogitsLoss</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">label_smoothing</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-33'>
<div class='docs'>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">245</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
<span class="lineno">246</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span>
<span class="lineno">247</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;mnist_gan&#39;</span><span class="p">,</span> <span class="n">comment</span><span class="o">=</span><span class="s1">&#39;test&#39;</span><span class="p">)</span>
<span class="lineno">248</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span>
<span class="lineno">249</span> <span class="p">{</span><span class="s1">&#39;label_smoothing&#39;</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">})</span>
<span class="lineno">250</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
<span class="lineno">251</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
<span class="lineno">252</span>
<span class="lineno">253</span>
<span class="lineno">254</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">255</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>