Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

410 lines
30 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN)."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Deep Convolutional Generative Adversarial Networks (DCGAN)"/>
<meta name="twitter:description" content="A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN)."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/gan/dcgan/index.html"/>
<meta property="og:title" content="Deep Convolutional Generative Adversarial Networks (DCGAN)"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Deep Convolutional Generative Adversarial Networks (DCGAN)"/>
<meta property="og:description" content="A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN)."/>
<title>Deep Convolutional Generative Adversarial Networks (DCGAN)</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/gan/dcgan/index.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">gan</a>
<a class="parent" href="index.html">dcgan</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/gan/dcgan/__init__.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Deep Convolutional Generative Adversarial Networks (DCGAN)</h1>
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of paper
<a href="https://arxiv.org/abs/1511.06434">Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks</a>.</p>
<p>This implementation is based on the <a href="https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html">PyTorch DCGAN Tutorial</a>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">15</span><span></span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="lineno">16</span>
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">calculate</span>
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
<span class="lineno">20</span><span class="kn">from</span> <span class="nn">labml_nn.gan.original.experiment</span> <span class="kn">import</span> <span class="n">Configs</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h3>Convolutional Generator Network</h3>
<p>This is similar to the de-convolutional network used for CelebA faces,
but modified for MNIST images.</p>
<p><img src="https://pytorch.org/tutorials/_images/dcgan_generator.png" style="max-width:90%" /></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">23</span><span class="k">class</span> <span class="nc">Generator</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">33</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">34</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>The input is $1 \times 1$ with 100 channels</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">36</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>This gives $3 \times 3$ output</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">38</span> <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">39</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">),</span>
<span class="lineno">40</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>This gives $7 \times 7$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">43</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">512</span><span class="p">),</span>
<span class="lineno">44</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>This gives $14 \times 14$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">46</span> <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">47</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">256</span><span class="p">),</span>
<span class="lineno">48</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>This gives $28 \times 28$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">50</span> <span class="n">nn</span><span class="o">.</span><span class="n">ConvTranspose2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">51</span> <span class="n">nn</span><span class="o">.</span><span class="n">Tanh</span><span class="p">()</span>
<span class="lineno">52</span> <span class="p">)</span>
<span class="lineno">53</span>
<span class="lineno">54</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_weights_init</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">56</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Change from shape <code>[batch_size, 100]</code> to <code>[batch_size, 100, 1, 1]</code></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">58</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="lineno">59</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">60</span> <span class="k">return</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<h3>Convolutional Discriminator Network</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">63</span><span class="k">class</span> <span class="nc">Discriminator</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">68</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">69</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>The input is $28 \times 28$ with one channel</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">71</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>This gives $14 \times 14$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">73</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">74</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>This gives $7 \times 7$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">77</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">512</span><span class="p">),</span>
<span class="lineno">78</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>This gives $3 \times 3$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">80</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">81</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">),</span>
<span class="lineno">82</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>This gives $1 \times 1$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">84</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1024</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="lineno">85</span> <span class="p">)</span>
<span class="lineno">86</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_weights_init</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">88</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="lineno">89</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">90</span> <span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">93</span><span class="k">def</span> <span class="nf">_weights_init</span><span class="p">(</span><span class="n">m</span><span class="p">):</span>
<span class="lineno">94</span> <span class="n">classname</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
<span class="lineno">95</span> <span class="k">if</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">&#39;Conv&#39;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="lineno">96</span> <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">)</span>
<span class="lineno">97</span> <span class="k">elif</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">&#39;BatchNorm&#39;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="lineno">98</span> <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">)</span>
<span class="lineno">99</span> <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">constant_</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>We import the [simple gan experiment]((simple_mnist_experiment.html) and change the
generator and discriminator networks</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">104</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">generator</span><span class="p">,</span> <span class="s1">&#39;cnn&#39;</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">Generator</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span>
<span class="lineno">105</span><span class="n">calculate</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">discriminator</span><span class="p">,</span> <span class="s1">&#39;cnn&#39;</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">c</span><span class="p">:</span> <span class="n">Discriminator</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">108</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
<span class="lineno">109</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span>
<span class="lineno">110</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;mnist_dcgan&#39;</span><span class="p">)</span>
<span class="lineno">111</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span>
<span class="lineno">112</span> <span class="p">{</span><span class="s1">&#39;discriminator&#39;</span><span class="p">:</span> <span class="s1">&#39;cnn&#39;</span><span class="p">,</span>
<span class="lineno">113</span> <span class="s1">&#39;generator&#39;</span><span class="p">:</span> <span class="s1">&#39;cnn&#39;</span><span class="p">,</span>
<span class="lineno">114</span> <span class="s1">&#39;label_smoothing&#39;</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">})</span>
<span class="lineno">115</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
<span class="lineno">116</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
<span class="lineno">117</span>
<span class="lineno">118</span>
<span class="lineno">119</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">120</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>