mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-11-01 12:01:45 +08:00
219 lines
6.3 KiB
Python
219 lines
6.3 KiB
Python
"""
|
|
---
|
|
title: Configurable Transformer Components
|
|
summary: These are configurable components that can be re-used quite easily.
|
|
---
|
|
|
|
# Configurable Transformer Components
|
|
"""
|
|
import copy
|
|
|
|
import torch.nn as nn
|
|
|
|
from labml.configs import BaseConfigs, option, calculate
|
|
from labml_helpers.module import Module
|
|
from .mha import MultiHeadAttention
|
|
from .models import EmbeddingsWithPositionalEncoding, EmbeddingsWithLearnedPositionalEncoding, FeedForward, \
|
|
TransformerLayer, Encoder, Decoder, Generator, EncoderDecoder
|
|
|
|
|
|
class TransformerConfigs(BaseConfigs):
|
|
"""
|
|
<a id="TransformerConfigs">
|
|
## Transformer Configurations
|
|
</a>
|
|
|
|
This defines configurations for a transformer.
|
|
The configurations are calculate using option functions.
|
|
These are lazy loaded and therefore only the necessary modules
|
|
are calculated.
|
|
"""
|
|
# Number of attention heads
|
|
n_heads: int = 8
|
|
# Transformer embedding size
|
|
d_model: int = 512
|
|
# Number of layers
|
|
n_layers: int = 6
|
|
# Number of features in position-wise feedforward layer
|
|
d_ff: int = 2048
|
|
# Dropout probability
|
|
dropout: float = 0.1
|
|
# Number of tokens in the source vocabulary (for token embeddings)
|
|
n_src_vocab: int
|
|
# Number of tokens in the target vocabulary (to generate logits for prediction)
|
|
n_tgt_vocab: int
|
|
|
|
# The encoder self attention
|
|
encoder_attn: MultiHeadAttention = 'mha'
|
|
# The decoder self attention
|
|
decoder_attn: MultiHeadAttention = 'mha'
|
|
# The decoder memory attention
|
|
decoder_mem_attn: MultiHeadAttention = 'mha'
|
|
# Position-wise feedforward layer
|
|
feed_forward: FeedForward
|
|
# Activation in position-wise feedforward layer
|
|
feed_forward_activation: nn.Module = 'ReLU'
|
|
|
|
# Encoder layer
|
|
encoder_layer: TransformerLayer = 'default'
|
|
# Decoder layer
|
|
decoder_layer: TransformerLayer = 'default'
|
|
|
|
# Encoder consisting of multiple encoder layers
|
|
encoder: Encoder = 'default'
|
|
# Encoder consisting of multiple decoder layers
|
|
decoder: Decoder = 'default'
|
|
|
|
# Embedding layer for source
|
|
src_embed: Module = 'fixed_pos'
|
|
# Embedding layer for target (for decoder)
|
|
tgt_embed: Module = 'fixed_pos'
|
|
|
|
# Logit generator for prediction
|
|
generator: Generator = 'default'
|
|
|
|
# Encoder-decoder
|
|
encoder_decoder: EncoderDecoder
|
|
|
|
|
|
@option(TransformerConfigs.feed_forward_activation, 'ReLU')
|
|
def _feed_forward_activation_relu():
|
|
"""
|
|
ReLU activation
|
|
"""
|
|
return nn.ReLU()
|
|
|
|
|
|
@option(TransformerConfigs.feed_forward_activation, 'GELU')
|
|
def _feed_forward_activation_gelu():
|
|
"""
|
|
GELU activation
|
|
"""
|
|
return nn.GELU()
|
|
|
|
|
|
@option(TransformerConfigs.feed_forward, 'default')
|
|
def _feed_forward(c: TransformerConfigs):
|
|
"""
|
|
Create feedforward layer
|
|
"""
|
|
return FeedForward(c.d_model, c.d_ff, c.dropout, c.feed_forward_activation)
|
|
|
|
|
|
# ### Multi-head Attention
|
|
def _mha(c: TransformerConfigs):
|
|
return MultiHeadAttention(c.n_heads, c.d_model)
|
|
|
|
|
|
calculate(TransformerConfigs.encoder_attn, 'mha', _mha)
|
|
calculate(TransformerConfigs.decoder_attn, 'mha', _mha)
|
|
calculate(TransformerConfigs.decoder_mem_attn, 'mha', _mha)
|
|
|
|
|
|
# ### Relative Multi-head Attention
|
|
def _relative_mha(c: TransformerConfigs):
|
|
from .relative_mha import RelativeMultiHeadAttention
|
|
return RelativeMultiHeadAttention(c.n_heads, c.d_model)
|
|
|
|
|
|
calculate(TransformerConfigs.encoder_attn, 'relative', _relative_mha)
|
|
calculate(TransformerConfigs.decoder_attn, 'relative', _relative_mha)
|
|
calculate(TransformerConfigs.decoder_mem_attn, 'relative', _relative_mha)
|
|
|
|
|
|
@option(TransformerConfigs.encoder_layer, 'default')
|
|
def _encoder_layer(c: TransformerConfigs):
|
|
"""
|
|
Encoder layer
|
|
"""
|
|
return TransformerLayer(d_model=c.d_model, self_attn=c.encoder_attn,
|
|
src_attn=None, feed_forward=copy.deepcopy(c.feed_forward),
|
|
dropout_prob=c.dropout)
|
|
|
|
|
|
@option(TransformerConfigs.decoder_layer, 'default')
|
|
def _decoder_layer(c: TransformerConfigs):
|
|
"""
|
|
Decoder layer
|
|
"""
|
|
return TransformerLayer(d_model=c.d_model, self_attn=c.decoder_attn,
|
|
src_attn=c.decoder_mem_attn, feed_forward=copy.deepcopy(c.feed_forward),
|
|
dropout_prob=c.dropout)
|
|
|
|
|
|
@option(TransformerConfigs.encoder, 'default')
|
|
def _encoder(c: TransformerConfigs):
|
|
"""
|
|
Encoder
|
|
"""
|
|
return Encoder(c.encoder_layer, c.n_layers)
|
|
|
|
|
|
@option(TransformerConfigs.decoder, 'default')
|
|
def _decoder(c: TransformerConfigs):
|
|
"""
|
|
Decoder
|
|
"""
|
|
return Decoder(c.decoder_layer, c.n_layers)
|
|
|
|
|
|
@option(TransformerConfigs.generator, 'default')
|
|
def _generator(c: TransformerConfigs):
|
|
"""
|
|
Logit generator
|
|
"""
|
|
return Generator(c.n_tgt_vocab, c.d_model)
|
|
|
|
|
|
# ## Positional Embeddings
|
|
@option(TransformerConfigs.src_embed, 'fixed_pos')
|
|
def _src_embed_with_positional(c: TransformerConfigs):
|
|
"""
|
|
Source embedding with fixed positional encodings
|
|
"""
|
|
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_src_vocab)
|
|
|
|
|
|
@option(TransformerConfigs.tgt_embed, 'fixed_pos')
|
|
def _tgt_embed_with_positional(c: TransformerConfigs):
|
|
"""
|
|
Target embedding with fixed positional encodings
|
|
"""
|
|
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_tgt_vocab)
|
|
|
|
|
|
# ## Learned Positional Embeddings
|
|
@option(TransformerConfigs.src_embed, 'learned_pos')
|
|
def _src_embed_with_learned_positional(c: TransformerConfigs):
|
|
"""
|
|
Source embedding with learned positional encodings
|
|
"""
|
|
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_src_vocab)
|
|
|
|
|
|
@option(TransformerConfigs.tgt_embed, 'learned_pos')
|
|
def _tgt_embed_with_learned_positional(c: TransformerConfigs):
|
|
"""
|
|
Target embedding with learned positional encodings
|
|
"""
|
|
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_tgt_vocab)
|
|
|
|
|
|
# ## No Positional Embeddings
|
|
@option(TransformerConfigs.src_embed, 'no_pos')
|
|
def _src_embed_without_positional(c: TransformerConfigs):
|
|
"""
|
|
Source embedding without positional encodings
|
|
"""
|
|
return nn.Embedding(c.n_src_vocab, c.d_model)
|
|
|
|
|
|
@option(TransformerConfigs.tgt_embed, 'no_pos')
|
|
def _tgt_embed_without_positional(c: TransformerConfigs):
|
|
return nn.Embedding(c.n_tgt_vocab, c.d_model)
|
|
|
|
|
|
@option(TransformerConfigs.encoder_decoder, 'default')
|
|
def _encoder_decoder(c: TransformerConfigs):
|
|
return EncoderDecoder(c.encoder, c.decoder, c.src_embed, c.tgt_embed, c.generator)
|