Files
Varuna Jayasiri b2b305ff4d optim configs
2020-09-26 21:25:24 +05:30

201 lines
6.9 KiB
Python

from typing import Optional
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.utils.data
from torchvision import transforms
import labml.utils.pytorch as pytorch_utils
from labml import tracker, monit, experiment
from labml.configs import option, calculate
from labml_helpers.datasets.mnist import MNISTConfigs
from labml_helpers.device import DeviceConfigs
from labml_helpers.module import Module
from labml_helpers.optimizer import OptimizerConfigs
from labml_helpers.train_valid import MODE_STATE, BatchStepProtocol, TrainValidConfigs, hook_model_outputs, Mode
from labml_nn.gan import DiscriminatorLogitsLoss, GeneratorLogitsLoss
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
class Generator(Module):
def __init__(self):
super(Generator, self).__init__()
layer_sizes = [256, 512, 1024]
layers = []
d_prev = 100
for size in layer_sizes:
layers = layers + [nn.Linear(d_prev, size), nn.LeakyReLU(0.2)]
d_prev = size
self.layers = nn.Sequential(*layers, nn.Linear(d_prev, 28 * 28), nn.Tanh())
def forward(self, x):
x = self.layers(x)
x = x.view(x.shape[0], 1, 28, 28)
return x
class Discriminator(Module):
def __init__(self):
super(Discriminator, self).__init__()
layer_sizes = [512, 256]
layers = []
d_prev = 28 * 28
for size in layer_sizes:
layers = layers + [nn.Linear(d_prev, size), nn.LeakyReLU(0.2)]
d_prev = size
self.layers = nn.Sequential(*layers, nn.Linear(d_prev, 1))
def forward(self, x):
return self.layers(x.view(x.shape[0], -1))
class GANBatchStep(BatchStepProtocol):
def __init__(self, *,
discriminator: Module,
generator: Module,
discriminator_optimizer: Optional[torch.optim.Adam],
generator_optimizer: Optional[torch.optim.Adam],
discriminator_loss: DiscriminatorLogitsLoss,
generator_loss: GeneratorLogitsLoss):
self.generator = generator
self.discriminator = discriminator
self.generator_loss = generator_loss
self.discriminator_loss = discriminator_loss
self.generator_optimizer = generator_optimizer
self.discriminator_optimizer = discriminator_optimizer
hook_model_outputs(self.generator, 'generator')
hook_model_outputs(self.discriminator, 'discriminator')
tracker.set_scalar("loss.generator.*", True)
tracker.set_scalar("loss.discriminator.*", True)
tracker.set_image("generated", True, 1 / 100)
def prepare_for_iteration(self):
if MODE_STATE.is_train:
self.generator.train()
self.discriminator.train()
else:
self.generator.eval()
self.discriminator.eval()
def process(self, batch: any, state: any):
device = self.discriminator.device
data, target = batch
data, target = data.to(device), target.to(device)
with monit.section("generator"):
latent = torch.randn(data.shape[0], 100, device=device)
if MODE_STATE.is_train:
self.generator_optimizer.zero_grad()
generated_images = self.generator(latent)
tracker.add('generated', generated_images[0:5])
logits = self.discriminator(generated_images)
loss = self.generator_loss(logits)
tracker.add("loss.generator.", loss)
if MODE_STATE.is_train:
loss.backward()
if MODE_STATE.is_log_parameters:
pytorch_utils.store_model_indicators(self.generator, 'generator')
self.generator_optimizer.step()
with monit.section("discriminator"):
latent = torch.randn(data.shape[0], 100, device=device)
if MODE_STATE.is_train:
self.discriminator_optimizer.zero_grad()
logits_true = self.discriminator(data)
logits_false = self.discriminator(self.generator(latent).detach())
loss_true, loss_false = self.discriminator_loss(logits_true, logits_false)
loss = loss_true + loss_false
tracker.add("loss.discriminator.true.", loss_true)
tracker.add("loss.discriminator.false.", loss_false)
tracker.add("loss.discriminator.", loss)
if MODE_STATE.is_train:
loss.backward()
if MODE_STATE.is_log_parameters:
pytorch_utils.store_model_indicators(self.discriminator, 'discriminator')
self.discriminator_optimizer.step()
return {'samples': len(data)}, None
class Configs(MNISTConfigs, TrainValidConfigs):
device: torch.device = DeviceConfigs()
epochs: int = 10
is_save_models = True
discriminator: Module
generator: Module
generator_optimizer: torch.optim.Adam
discriminator_optimizer: torch.optim.Adam
generator_loss: GeneratorLogitsLoss
discriminator_loss: DiscriminatorLogitsLoss
batch_step = 'gan_batch_step'
label_smoothing: float = 0.2
@option(Configs.dataset_transforms)
def mnist_transforms():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
@option(Configs.batch_step)
def gan_batch_step(c: Configs):
return GANBatchStep(discriminator=c.discriminator,
generator=c.generator,
discriminator_optimizer=c.discriminator_optimizer,
generator_optimizer=c.generator_optimizer,
discriminator_loss=c.discriminator_loss,
generator_loss=c.generator_loss)
calculate(Configs.generator, lambda c: Generator().to(c.device))
calculate(Configs.discriminator, lambda c: Discriminator().to(c.device))
calculate(Configs.generator_loss, lambda c: GeneratorLogitsLoss(c.label_smoothing).to(c.device))
calculate(Configs.discriminator_loss, lambda c: DiscriminatorLogitsLoss(c.label_smoothing).to(c.device))
@option(Configs.discriminator_optimizer)
def _discriminator_optimizer(c: Configs):
opt_conf = OptimizerConfigs()
opt_conf.optimizer = 'Adam'
opt_conf.parameters = c.discriminator.parameters()
opt_conf.learning_rate = 2.5e-4
opt_conf.betas = (0.5, 0.999)
return opt_conf
@option(Configs.generator_optimizer)
def _generator_optimizer(c: Configs):
opt_conf = OptimizerConfigs()
opt_conf.optimizer = 'Adam'
opt_conf.parameters = c.generator.parameters()
opt_conf.learning_rate = 2.5e-4
opt_conf.betas = (0.5, 0.999)
return opt_conf
def main():
conf = Configs()
experiment.create(name='mnist_gan', comment='test')
experiment.configs(conf,
{'label_smoothing': 0.01},
'run')
with experiment.start():
conf.run()
if __name__ == '__main__':
main()