mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			286 lines
		
	
	
		
			128 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			128 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 0,
 | |
|  "metadata": {
 | |
|   "colab": {
 | |
|    "name": "Cycle GAN",
 | |
|    "provenance": [],
 | |
|    "collapsed_sections": [],
 | |
|    "toc_visible": true
 | |
|   },
 | |
|   "kernelspec": {
 | |
|    "name": "python3",
 | |
|    "language": "python",
 | |
|    "display_name": "Python 3"
 | |
|   },
 | |
|   "accelerator": "GPU"
 | |
|  },
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "AYV_dMVDxyc2"
 | |
|    },
 | |
|    "source": [
 | |
|     "[](https://github.com/labmlai/annotated_deep_learning_paper_implementations)\n",
 | |
|     "[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/gan/dcgan/experiment.ipynb)\n",
 | |
|     "\n",
 | |
|     "## DCGAN\n",
 | |
|     "\n",
 | |
|     "This is an experiment training DCGAN model."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "AahG_i2y5tY9"
 | |
|    },
 | |
|    "source": [
 | |
|     "Install the `labml-nn` package"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "id": "ZCzmCrAIVg0L",
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/"
 | |
|     },
 | |
|     "outputId": "2fe2685f-731c-4c47-854e-a4f00e485281"
 | |
|    },
 | |
|    "source": [
 | |
|     "!pip install labml-nn"
 | |
|    ],
 | |
|    "execution_count": 1,
 | |
|    "outputs": [
 | |
|     {
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Collecting labml-nn\n",
 | |
|       "\u001B[?25l  Downloading https://files.pythonhosted.org/packages/9d/bb/a7a6f69ab6e21de2398b5f6b0b2bb47b430e4a20ae2c8710c489e02813be/labml_nn-0.4.81-py3-none-any.whl (118kB)\n",
 | |
|       "\r\u001B[K     |██▊                             | 10kB 22.6MB/s eta 0:00:01\r\u001B[K     |█████▌                          | 20kB 14.6MB/s eta 0:00:01\r\u001B[K     |████████▎                       | 30kB 12.9MB/s eta 0:00:01\r\u001B[K     |███████████                     | 40kB 12.1MB/s eta 0:00:01\r\u001B[K     |█████████████▉                  | 51kB 8.2MB/s eta 0:00:01\r\u001B[K     |████████████████▋               | 61kB 8.7MB/s eta 0:00:01\r\u001B[K     |███████████████████▍            | 71kB 8.9MB/s eta 0:00:01\r\u001B[K     |██████████████████████▏         | 81kB 9.9MB/s eta 0:00:01\r\u001B[K     |█████████████████████████       | 92kB 8.9MB/s eta 0:00:01\r\u001B[K     |███████████████████████████▊    | 102kB 8.0MB/s eta 0:00:01\r\u001B[K     |██████████████████████████████▌ | 112kB 8.0MB/s eta 0:00:01\r\u001B[K     |████████████████████████████████| 122kB 8.0MB/s \n",
 | |
|       "\u001B[?25hRequirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from labml-nn) (1.7.0+cu101)\n",
 | |
|       "Collecting labml-helpers>=0.4.72\n",
 | |
|       "  Downloading https://files.pythonhosted.org/packages/ec/58/2b7dcfde4565134ad97cdfe96ad7070fef95c37be2cbc066b608c9ae5c1d/labml_helpers-0.4.72-py3-none-any.whl\n",
 | |
|       "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from labml-nn) (1.19.5)\n",
 | |
|       "Collecting labml>=0.4.94\n",
 | |
|       "\u001B[?25l  Downloading https://files.pythonhosted.org/packages/99/b2/3a424548d74a88ce565b38f6b7e707e7c2f00bf8c7c575a1c251807e4896/labml-0.4.94-py3-none-any.whl (99kB)\n",
 | |
|       "\u001B[K     |████████████████████████████████| 102kB 8.2MB/s \n",
 | |
|       "\u001B[?25hCollecting einops\n",
 | |
|       "  Downloading https://files.pythonhosted.org/packages/5d/a0/9935e030634bf60ecd572c775f64ace82ceddf2f504a5fd3902438f07090/einops-0.3.0-py2.py3-none-any.whl\n",
 | |
|       "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.6/dist-packages (from torch->labml-nn) (3.7.4.3)\n",
 | |
|       "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from torch->labml-nn) (0.16.0)\n",
 | |
|       "Requirement already satisfied: dataclasses in /usr/local/lib/python3.6/dist-packages (from torch->labml-nn) (0.8)\n",
 | |
|       "Collecting gitpython\n",
 | |
|       "\u001B[?25l  Downloading https://files.pythonhosted.org/packages/d7/cb/ec98155c501b68dcb11314c7992cd3df6dce193fd763084338a117967d53/GitPython-3.1.12-py3-none-any.whl (159kB)\n",
 | |
|       "\u001B[K     |████████████████████████████████| 163kB 9.9MB/s \n",
 | |
|       "\u001B[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from labml>=0.4.94->labml-nn) (3.13)\n",
 | |
|       "Collecting gitdb<5,>=4.0.1\n",
 | |
|       "\u001B[?25l  Downloading https://files.pythonhosted.org/packages/48/11/d1800bca0a3bae820b84b7d813ad1eff15a48a64caea9c823fc8c1b119e8/gitdb-4.0.5-py3-none-any.whl (63kB)\n",
 | |
|       "\u001B[K     |████████████████████████████████| 71kB 8.6MB/s \n",
 | |
|       "\u001B[?25hCollecting smmap<4,>=3.0.1\n",
 | |
|       "  Downloading https://files.pythonhosted.org/packages/d5/1e/6130925131f639b2acde0f7f18b73e33ce082ff2d90783c436b52040af5a/smmap-3.0.5-py2.py3-none-any.whl\n",
 | |
|       "Installing collected packages: smmap, gitdb, gitpython, labml, labml-helpers, einops, labml-nn\n",
 | |
|       "Successfully installed einops-0.3.0 gitdb-4.0.5 gitpython-3.1.12 labml-0.4.94 labml-helpers-0.4.72 labml-nn-0.4.81 smmap-3.0.5\n"
 | |
|      ],
 | |
|      "name": "stdout"
 | |
|     }
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "SE2VUQ6L5zxI"
 | |
|    },
 | |
|    "source": [
 | |
|     "Imports"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "id": "0hJXx_g0wS2C"
 | |
|    },
 | |
|    "source": [
 | |
|     "from labml import experiment\n",
 | |
|     "from labml_nn.gan.dcgan import Configs"
 | |
|    ],
 | |
|    "execution_count": 1,
 | |
|    "outputs": []
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "Lpggo0wM6qb-"
 | |
|    },
 | |
|    "source": [
 | |
|     "Create an experiment"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "id": "bFcr9k-l4cAg"
 | |
|    },
 | |
|    "source": [
 | |
|     "experiment.create(name=\"mnist_dcgan\")"
 | |
|    ],
 | |
|    "execution_count": 2,
 | |
|    "outputs": []
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "-OnHLi626tJt"
 | |
|    },
 | |
|    "source": [
 | |
|     "Initialize configurations"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "id": "Piz0c5f44hRo"
 | |
|    },
 | |
|    "source": [
 | |
|     "conf = Configs()"
 | |
|    ],
 | |
|    "execution_count": 3,
 | |
|    "outputs": []
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "wwMzCqpD6vkL"
 | |
|    },
 | |
|    "source": [
 | |
|     "Set experiment configurations and assign a configurations dictionary to override configurations"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/",
 | |
|      "height": 17
 | |
|     },
 | |
|     "id": "e6hmQhTw4nks",
 | |
|     "outputId": "4be767af-0ebd-4c35-8da0-0e532495e037"
 | |
|    },
 | |
|    "source": [
 | |
|     "experiment.configs(conf,\n",
 | |
|     "                   {'discriminator': 'cnn',\n",
 | |
|     "                    'generator': 'cnn',\n",
 | |
|     "                    'label_smoothing': 0.01})"
 | |
|    ],
 | |
|    "execution_count": 4,
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": "<IPython.core.display.HTML object>",
 | |
|       "text/html": "<pre style=\"overflow-x: scroll;\"></pre>"
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     }
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "id": "KJZRf8527GxL"
 | |
|    },
 | |
|    "source": [
 | |
|     "Start the experiment and run the training loop."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/",
 | |
|      "height": 649
 | |
|     },
 | |
|     "id": "aIAWo7Fw5DR8",
 | |
|     "outputId": "e3b02247-8ff9-47b5-8f52-49c9e3b8377f"
 | |
|    },
 | |
|    "source": [
 | |
|     "with experiment.start():\n",
 | |
|     "    conf.run()"
 | |
|    ],
 | |
|    "execution_count": 5,
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": "<IPython.core.display.HTML object>",
 | |
|       "text/html": "<pre style=\"overflow-x: scroll;\"></pre>"
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": "<Figure size 576x720 with 6 Axes>",
 | |
|       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAKGCAYAAACSkUhPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABxA0lEQVR4nO3dd3yUxfY/8DObHkghJECAQOhFOhGpioUOAgoIImLF3uv1eq96rVexoF4LKoINsSOKBRDEgkhApEhHIAHSKOl1M78/iN8fZz+LREkyoJ/36+VL5mR28+yzs89kd86eMdZaISIioprlcX0AREREf0ecgImIiBzgBExEROQAJ2AiIiIHOAETERE5wAmYiIjIAU7ARPSnGGOsMaal6+MgOlFxAib6GzLGXGSM+db1cRD9nXECJvqLMcYEuj4GIjo6TsBEVcwY080Y85MxJtcY864xZo4x5oGKnw03xqw2xhw0xnxvjOl02O12GGNuNcasMcZkV9wu9LCfH+22dxhj1ohIvjEm0BhzpzFmW8Vx/GKMGV3Rt52IvCAivYwxecaYgxXxEGPMVGPMLmNMujHmBWNM2GG/4zZjzF5jzB5jzCXVfR6J/uo4ARNVIWNMsIh8KCIzRSRGRGaLyG8TX1cRmSEiV4hIXRF5UUQ+NsaEHHYX40RksIg0E5FOInLRH7jtBBEZJiLR1toyEdkmIv1EJEpE7hORN4wx8dbaDSJypYgss9bWttZGV9z+ERFpLSJdRKSliDQSkX9X/P7BInKriAwQkVYictaxnCci4gRMVNV6ikigiDxtrS211n4gIj9W/GyKiLxorV1urfVaa2eJSHHFbX7ztLV2j7V2v4jMk0OT4R+5bYq1tlBExFr7bsV9lVtr54jIFhHp4e+gjTGm4nfcZK3db63NFZGHRGR8RZdxIvKqtXadtTZfRO79syeIiA7hWhFR1WooIrut3uUkpeL/TUVksjHmusN+Flxxm9+kHfbvgsN+Vpnbphz2bzHGXCgiN4tIYkWotojEHuG440QkXERWHpqLD92FiAQc9rhWHtZ/5xHuh4gqiRMwUdXaKyKNjDHmsEk4QQ59HJwiIg9aax/8E/dbmdv+36RvjGkqIi+JyJly6KNmrzFmtRyaVFXfClkiUigiJ1lrd/u5770Vj+M3Tf7Y4RORL34ETVS1lomIV0SurUiEGin//2Pfl0TkSmPMKeaQWsaYYcaYiErc7x+9bS05NMlmiogYYy4WkQ6H/TxdRBpXrFmLtba84nc8aYypV3GbRsaYQRX93xGRi4wx7Y0x4SJyT+VOBxEdCSdgoipkrS0RkXNE5FIROSgiF4jIJyJSbK1NFpHLReRZETkgIlulIsmqEvf7h25rrf1FRB6XQ38QpItIRxH57rAuX4nIehFJM8ZkVcTuqLjfH4wxOSKyUETaVNzfZyLyVMXttlb8n4iOgdFLVURU1Ywxy0XkBWvtq66PhYiOH3wHTFTFjDGnGWMaVHwEPVkOfZ3oc9fHRUTHFyZhEVW9NnJozbSWiGwXkTHW2r1uD4mIjjf8CJqIiMgBfgRNRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiBzgBExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkACdgIiIiB45pAjbGDDbGbDLGbDXG3FlVB0VERPRXZ6y1f+6GxgSIyGYRGSAiqSKyQkQmWGt/OdJtAkNr2ZCIGBXzBuk+nlI/vyu6DGNZgRDz1CtR7dKDwdAnom4BxAr3hKl2STQeQ0CBgVhUXB7EctJr6+OMwQdUVhAEsejIfNXO3x0OfUrqVO64ImL1feVl1II+to4XY7kBqu2J8HPe9+F598bgfUmevq/yMD3OyrIOiDc3Hw++GgSG1bLBPuOu3OcpMPhQxUTi4/LsC4AYPP487BMRg+OuIE0/x6X4NInHz3GFRhVBrDQjVN8urgT75ODroXYdfVyFe8OgT2mkn+MqxqcurI4+ruKsUOhjo/Gclufr8xVU289FIMPPuIvzM4bzdL/yYJ9xt++AePOqf9z5HXM+p9/4eZieKD9PuJ/XnKmrb+zNxmtKbX/Xur0+Y87vc4uxyJh8iOWl+wzYunjs3jw89uhon2tdqp9rXV0/x+XvGuxzrcvO8vMiivAzTgp9xlwtfDJsJp5Tb91KXOtCKj/m8OxUXg8R2Wqt3S4iYox5W0RGisgRJ+CQiBhpO/ImFctL0MdVaw/+QeAZlYX39UoMxMKv2a3aafOaQJ9+E1dCbO1/Oqv2rrPxGGKS8VQNuepbiC14vK8+zgvSoE/aTw0gNnLgD6qdfFcS9NkxBo8rehVeVM+4VN/Xt9NOgT4l5x6AWNm3+pyGnobnPXgW/hWQc34uxMw30aqd20FPCGn3PQO3qS7BETHSeqwed/mNdJ/QTHx9eM7YD7HwN6Iglj1B/yEW8A32OW3iCoiteribaqf1wmMIzcQPqdqP2ASx3dNaqnbEVanQJ2VBUzyuc1ap9roHOuHtBkNIIrbi66H9ORtVe9srbaBP2Ugcd0Ur9bir33cP9LFP14NY7pRsiJV+q6/cec31pJD24DS4TXUIjoiRNufqMZfrc/rDMvz8ETMwA+/szVi8/wvTVTv7s3jo0/P8nyD2y8P6+d19Fv662tvwD8gBE3+A2PeP99CBSZnQJ/vb+hAbdu4y1V55ezfos2MSXusiVuEfdIMv+l61P5/VG/qU9cNx4l2v//Jo0HMv9nkejz1ncg7E5Gt9TcxpU/kxdywfQTcSkZTD2qkVMcUYM8UYk2yMSS4rxL+iiKoDxx3VNI45+qOqPQnLWjvdWptkrU0KDPPz8QBRNeC4o5rGMUd/1LF8BL1bRBIOazeuiB2ZrfjvMKH7dDtuBX5cUD6+EGKB3++A2N6LolU7ZgOug32xpR3E7p/6rmrPPH8o9MlrVhtiQyJ/hljyO3o9Y1OfztCn1ce4NvNRE93vzifnQZ93Lh4IsRL8tFOGRuvj+uU9/OhmY//2eFzf6r/aU8Lxo6+ON+DHn7VvhQ8+pLiOXlMJLNTrKZk1s/x7iMXcglo+I7VeMn6MvrMvrgHF/4QfER44T19sYzfietK8FV0hds+DH6r2m5fhuCuJ9rPEMHkjxOZ+ql8jGweeBH1aLcF3ZQs76Y+Jp059A/o8ed1EiHlKcKGwzyXbVDv7bVyr3tgLj6vde3qpY1dxQ+jT6R8bIJZ5B36kHnRAX1AyT9Efb2f5WUesFhbzCsLT9O9usAzH3NaTIyDW5usUiO2bqNfqa+8phz5frsFzffdDc1V7ziWDoE9BQ7xetApLh9gvH61R7Y2ndoA+bb7Ex/h1b71cctkzn0Gf9y4ZADEbjPNAuzC9XLHmJbwmb4/DZZUWb+txkpKLY67dLXitC7utMcQCcvVSVcgB/ZF01u9c647lHfAKEWlljGlmjAkWkfEi8vEx3B8REdHfxp9+B2ytLTPGXCsiX4hIgIjMsNaur7IjIyIi+gs7lo+gxVo7X0TmV9GxEBER/W0c0wT8ZxifpYqHb3xFtfddh2ut/vzrkVEQ+2erT1X7iW7nQJ/Ir3Fd7/Xbeqn2I9/OgD45NgRiD+8aBrFN0xJU+8kz34I+j3xzAcRqf69XA97/dy/oc/+CVyAWavB7aRetmazaB6bhl/3u6/0hxKYtH6vaxS1wDe/gHQkQa/+/dRCbt9Tna1Sx+r68n+GaVbXyyT245cZ3VHt5bnO4ybAwXO994nZch3+g4weq/XjTcdAnZjUe0jvP9FftRz6dDn2KLL5E798xAmKbntFfQ3m473vQ5+mF50EsZJUedy/eeSb0uWPRaxDLKcd1wgd+0WvYeY/5GXf93ofYiwvGqHZBAo5pf+u9zZ/ANbqvFndRbdNE51t4F9fguPNZ+rv6qo9Ue9Nk/DpiZw8e37sP4dd0rm2yRLXfCcZxGbkO8wfef7SPaj/wxcvQZ08ZftVw2g4cF7se0mPu2bNmQp/7ll0Msf0bdc7E3CldoM/Ly/4HsS2lmPBy01r9Wst7GMfcvQPfhdj/NulrXUFnXF/OuQGfn9YvYP7F51/r/I7AJvprid6vjzzmWIqSiIjIAU7AREREDnACJiIicoATMBERkQN/ejOGPyMiqrHt2vd6FQvfpWtrbrocEwCazcWCGnkNMcFgX2ed9RC+F78AndcEF8SjW+ovUtc7D+volndqCbGALX76NddFKVLPwC/WN1iOyU3bx+rkMBuIx9n2hrUQK+2JBTWC1+3UgZho6JPdJQ5ioft0AYmUs/AcB+XgOW36EdaALWiuf2dYiv5C/g+bX5Hsgj01UhUhIhrHXfBBPaZSz8TKRQ2/wecpuxkm42W30u3aWDdBDvbCwhW+BeHbXL8G+hSdhUUEaq3GejfeBvp1s7cfJqzUSsMxle5TztcG4fWgzR047sq6tYZY0CZ9XDYeK+oXNcTXQ0iWToDZNRgTaaK2+3ndrjmIx1VXF6gI3Kfv+4etNTPuIiIb26RTrlWxYJ9j2TkiGm5XLxmLuOQkYiJeWZh+CMG5+Lzt6+5n4wCP7tfmOhxzxf07Qizsx20QK+nSTP++kzAxL+QAPm+l4/X1dn+Wn+Ijl2NBDXNSK4zt0UVcyhMxcaqgEW4wUutXfT3aPi4a+kRthpDErtgHsbI6uvhSQJ5+rf+w6eUjjjm+AyYiInKAEzAREZEDnICJiIgc4ARMRETkQI1WwvKGGMlurpONsjrrRA0bgIkD9p+4MXy0B/tlbNA7VeQm4rp35Fb8m2P6KL0DzL/Ch+B9J2GFrvhsTDLZeqM+pd48TKrY2wMTcup9oBOe7r0Pqw89HXUaxFJPx8SHFlt0otAvt8ZAn6D9fjYDb6urBkV8hklY46/7AmKvBuKOKkG6GIzsGqSTgooexU2/q0tZiJEDrfS4K6qnnydrMIkl/QZMwirYieckJFOPqeJoPIYmc/Dx3jbtddX+XwKOu7yG+BIN34zP+a+jdeJSuZ9kqoIe+HjqLNYJKtffghW05jzSA2K7hmBiS4t90fqYzsVx58F8SimK1+ev7ko89rbXY5n5H+ZjslDIAd3Oba5fC0WP18y484Ya2d9G/+7iuj7tGExQKr8Rr3VF38ZDLNhn07jiKHw9xy/Ba90/H5ip2s/FYwWtnKZYLTB8HT7f28bqsemJxGpSAQH4GMO/1LusvXHTs9DnwRZYTW7HCEzQTXxXX1+3nofJlKYMz40Zrx9jzCc45rrdsBpiny/H3e0ituoxldtMvz6LHjvymOM7YCIiIgc4ARMRETnACZiIiMgBTsBEREQOHFMlLGPMDhHJFRGviJRZa5N+r39k7Ub2lA5XqFjKAF0FpbAFZmmM65oMsblbMAGjJE1XJGnaLg36/KMZbl/8ZGedZFJ3ASYhXFZ/KcTaB+dCLNOr/6YZ/cMV0GdEK9y+7/yYH1T77g6nQ5+4hbiYPyYWz83JIXobvYPl+HfWBWsvgljBSp0cMemcRdDn2wldINZy1naIfTlfD4VIn0I6G+Y9KflZKTVTCctPVaIDrXQy1cGOmCzSocNOiG1Y3gxivlsdhrU5CF3uaPclxN48+STV9n6IFaCGNMCxcl4ExvZ49eMZs/Aa6NO0KVYse7Cl3krxgc6Y6NfnO7xdp7BdEOsZqvutKMYkxdfTe0Ns/dy2ql33rD3QJ/QfmFwz6vUlEHv6zZGqHb1NP6/rvnhK8vZV/7iLiGpsu/XR1deK6ujX78E2+LqMOBnPdV4hVl8LW6Cvm54RWKHpoubLIPbJKYmqHfclnopukfjcnuNnzKV59XGN//pK6NOhGVZte7m53pLyok7Doc+4ZZh0FxeYA7FTQvTj3lSKyWI3bcBtOAuW6kqA7Ufg1pZ5V8RCrO/s1RB7/QO9VWPtXfqCsHHuk5Kf6X/MVUUW9OnWWkzdIyIioiPiR9BEREQOHOsEbEXkS2PMSmPMFH8djDFTjDHJxpjk0tL8Y/x1RJXDcUc1TY25Eo45Orpj/Qi6r7V2tzGmnogsMMZstNaqxVJr7XQRmS4iEl4vwWZ21wUtavfWax5TElfALwk1WMwi4CfcQaNumv7sPTUWv7h9dcYFEJu6+l3Vvu3DSdAnvTv+vvfavAOxmybodZDyc3FNolGHgxDbUarXGy5YtRH6/OvLMRA75cxfIXZGmN5t5NIzJkCfA9fjuQkI1+fvrbfOhD4Ft2ERkeKDWCig0dd6LX/7eP23Xtni6t2FS427uASbnajXSMNGpat252hce2tfG9cid2/DNeDSWnp5p7wV/l07deMAiJ21RK87vbe8LfTJK8XCH5d1wLFx8zV6jVuGQhdpUAvX0F5M76/aI5fjrjf//Rbv7MpeSyDW22cN+NlzR0Of7WOiIeaN02Mhc3FD6BP9IOZzfJmFO4E1nafH/qab9dpx6bLqG3e+Yy6nib68Ro7V4+nyeNxlqqgc808+eOYMiAUW6scRGoy5M89tOBVio7/Rux99sBULSzQOPQixWA+Owwm3XqfaYS1w3I/piTkqa0t0rsP9q7C4z9ivr4LY7T0+h9hpPsd638SLoU/W+Vi4JiBGn7+fF+PuXk2ext3uVmUnQKzREl3gZttEvdZftvDIY+6Y3gFba3dX/D9DRD4UESyZQ0REROBPT8DGmFrGmIjf/i0iA0UEU+WIiIgIHMtH0PVF5ENjzG/385a1Fj8jICIiIvCnJ2Br7XYRwQUEIiIiOqoa3Q3JUyYSts8n4SJXJyn1DMMkEN8EJRGR6NMwKcPrU3BiSD0spPBQg28gNra1TnK49ydMrjotDO8r3GCCVcpAnfTx1bhH8Tj9rMk3DtT3dXbb/tDn9Z+fh1jzwAKI1fboRLcNt+H5a9AEv7rdu55O6EovxsIQWafjjifSCRMYdg3SX9KP8MkbyiiqkRocIiLi8YqE5OiCDGmZenemSU2Ww+2WHGgDsYP9cEehuBhdkGV/NhaNWNJ3OsQu7KiTm0YuWgV9bo1bAjF/L9tdI/XjWzjgKeizoywKYn1D9eM5pzsWRfjH4k8hNqr2FohFeXSyy/ax0dBHWmF2cI/GKaq9LrMB9IkYiQUdCvyMu8yePkmea/U48xTWzLjzeEVCD+jnJGWNTlbs1nwe3O7hHZjwlj8wD2Id43VCV7nFx/Vhu7cgNrHTMNVuOzcd+lxd93uIhZhwiLW+WRfLeKwRfgCaW44XO99r3cizJkKfd+fjta5pICbjhvlcg3fdhAV1TDEmqI3tu1K112Q3gj7eodkQ29+7HcR2D9AJauG/+oy54iOPOX4PmIiIyAFOwERERA5wAiYiInKAEzAREZEDx7Qb0h8V1iDBtrjgZhXL7aAXyBs11JVsRESeaDMHYhuLsfrS/H2dVPunrzCJJqAd7mC0rOdLqp1cXBv6RHgw+aZHCFatKbVe1U4tw6SlzHLc3eSljP6q/WzjJdBneTH+vsRATNBoEqiP32sxMeE/WbibVOtQndg2dRruIhK1AxMh9rfD4wrN0uMq6kJdVWbFlW9Kzqb0GsmICa+XYFudp8fdwQ5lqh0Zj+Piqta4A9YnGZ0gdlLUXtX+7A3c8SevCT4HK895QrW/KcJkOX9V4AaGY8x33K0vKYM+O8pwd6JnduoExLltMQHx66JoiDUIwKpa3UN0Mkp2OY79f+zFXb525euqbLvfw2pjtdK8ENvfDncHC/ephhc7Qe/s88MVs2tk3IU1SLDNL9RjLq+tvtad3Bar2A2P/Rli24rrYyxf7+azei5WBSuJwmv7t5Omqvbn+U2hT6gHx9e42piQ5Dvm8sqxSt6mUrzWPZSiE8Feb/Eh9Mny4vMd4udZa1yJa12v1XgdG5WgK4K9ORur/tVbhclbB1pjRTDj8yvjx+xQ7WVT3pbsI4w5vgMmIiJygBMwERGRA5yAiYiIHKjRQhxB+eVSf6VeF5p48beq/ck9uPNH6VRc65l9Mn4hOuN8vebb/9LV0Oe5Rt9BbPD5V6v2nTNegz4JAX52AfKzfH52Y70fRUB0NPQpmIMFEZZ0+Ei1z5x0JfR5fsbTEIvy4LnxXQcZ2qgb9Amog7shzblJ754yZgoWLfn6P7i+2XjWJohln95StQ/MbqzaZftxLaW6eEpFau/Va0qlZ+qCEPWm4lrVrmdwzdQ7AtfcF07opdrFZ2KfDX1fgdjgS29Q7f8+/xz0KbK4vp7hxWIWk5r0Ve3AJo2hT+50fLkv7ajX30674nro899pWBQh1OAaXUG5XjMb17gX9AlsGgexXeP0DjMXX4kFHV5/fjDEEp/dADFvG31fWbaJatfUuAsstBK7Vp8P21tf+w7egTvrpL+4A2I/9o7GfpN8rn8DcY12wymvQ+zUm25R7ccf+R/0aRPk71qH4/DshJ6qHRCHr5d287Hgz8et9PM76JwroM8zc3DMRXjw/SJc6xJOhj5x8fh6eeMiveZ7/oSvoM/8X/tDrOE7WyFW0E2vo++bodtl+4485vgOmIiIyAFOwERERA5wAiYiInKAEzAREZEDR03CMsbMEJHhIpJhre1QEYsRkTkikigiO0RknLX2wFF/W7mVgDydmDAx6ifVPutxvcOGiP+Ej7yz8IvnDRboggin37wR+gxL7AkxT6k+hjPD8Pd9V4S7gYR7MFnB9vbZofEX3EVpVKPVEBvc7BTVDixeCX1aB+EuO7vKMOFHfI4r9zx8zJFbsfDEhaN0IsJ3Z2Mhk9qZ6/B2q36B2KyxOtlmyx161xLvQvzCfHXxlJZLeKreNeqFbi+r9o6ZmJTmrwjGZ5MxYaT+Mp0AM/ya1dBndGdMIgrer3c/8lfYZVspPr8hBhPvAlo114FSLMRxSVNMQBzSUifVhRaugD49X8Tft7kUn78C3yIIPbFoSXoHHMMjzteJmAsuwPEan4Kv5YHfYiGLLyboohXeET7FFBbja7s6GK+VoBw9fuZ1f1G197yO1xSvn/dEHw4fALH4ufqx97naT1GPVn0hVrtIP789n8Lndm8ZPrd4pCLlvXUxH08eFq4YEb0QYkOa+zy/xWuhj79r3a9+XgvikxxbOKI7dPEGYw2Mq87XO3x9PhgLE0Xtx+M6a/leiC0crYuBpEzUSbZl3xz5WleZd8AzRcT36nGniCyy1rYSkUUVbSIiIqqko07A1tqlIuJbH3KkiMyq+PcsERlVtYdFRET01/Zn14DrW2t/ey+eJiJYrLSCMWaKMSbZGJNcWoabxxNVBzXuSvF7gERVjWOO/qhjTsKyh3ZzOOKODtba6dbaJGttUlCgv5UEoqqnxp2f9SSiqsYxR3/Un62ElW6MibfW7jXGxItIRmVu5A0NkINtI1TsilPPV+3dI7CCT1E/TBiy43Gnld7/3qHaZ4SnQp+ZXYZDbMhMXfFpUMMu0Ef8VJzq/RMew+QZ81R7fxnurDQhEpOWvmijExMuf28+9PF3XCYEKzh5PtcVae58ACt73bthBMRe36SreDUXrK6TdlFniM1Kwr/jbIlOCmn9oE+1mL01l4RVHuyR3Gb6gnh7v7GqvWekrpgkIpLd1k/CTjuMxYzS4/PcKEyg+67j1RDr95RO6PD7/AZhFZ3UOa0g1ueN7aodFoAJZN1Cd0HsnYZ9VHvcvGXQx+9xBeKlw7OgnmqfPWMx9HnyU3z9fThXJws1z9kDfbJPx8e84ExMWjNF+pw2+KfeNW3HbrhJtSgP9kh+gk48vLb3ONXOGIg7ER3ogO9lvGfhmOtxu64wNTryJ+izpMtVELtghk4+8vfcesLxjVLY5/gHxUWv6GtdakkM9EkIxF2zvF11cucVs3A3pMq+FvLm6fniwkc+gT6PrzkLYu+m6uqAtSNwLKWdjdeEhf3wGGxJumq3fkxfk/enHfH96Z9+B/yxiEyu+PdkEZn7J++HiIjob+moE7AxZraILBORNsaYVGPMpSLyiIgMMMZsEZGzKtpERERUSUf9CNpaO+EIP8IdjImIiKhSWAmLiIjIgRrdjtBYkcAivSC9a4xeRI/ehgkH9vsIiI26+GuIpRVHqnb/F2+DPt2mYQLUeyk+C/KBmKwSUL8exH6YHA2xsz54Q7VP9pP4sseLCV3lT+oqL8/uPB36hARiBolp0wxipffq5I+Or2GO3JjE1RA7o7Y+N9f3vxb65PTCxLP6yzGZxJOvK9RsukwnaBQ9XqNDT4xPHsSu8TrBIiwDEyUC8/Dv0+Y98Pncm6PH3bnv3AR9Aq7CKj6vrdXVz1rX2gx9TCImJSbchwlsXWfr42obghV7pmeeBrENd+mEvUX7cZtP8WAijad1c4iZS3UlpJMW4HhN6o1bVzYKPaja3/x6CvTJTcRqRkF5mCQTsq9ItTdP0glFRY/ia69aGBHrM3x2TUxU7Vq78Xn0RmEFs3YtMCltY7b+5ufoT26FPiG3Y3HCWam68lmgx881pVEDiBVdgq+Pjgv1bbuFpEAfr+Dzln6HHidTt2Glr0jPDohJJ0zEi/J5XbVdhOfq1MRtEOsfrSurTTt5HPTJTcTHXK8NbiFpvLrftrE68bZo2pHHHN8BExEROcAJmIiIyAFOwERERA7U7Bqw10pQvl73CDmo/wbYPRLXQMZ2Xg6x+SknQazeNXp98t4Fb0KfYD87K00fdrJq37k5GfokBuIaXnxAGMSyy/Ua1IVnTII+Qz7CQg3/SNSFNx7tijuZ/G/bEoiVCq6FNwsMVe1ii0/zkqt6QeztnjqxfcgN30Ofn67GQhxXz/4AYretGqPaUYv1WlA6biRVbUyZldB9ujBFUbT+Qn1WN1zvadw2HWLZxaEQa3SXHlMnvfED9Fl7sCHEPOfoMXXLGrxdXACWNGzu51Vb6rMT0QWn4pcXes3F9dfnT31dtZ/uhuuvD23D4hzRHhx38QH6nBZbfC1vfRV32Frts5TbaBKuS9a5Kwpil77xMcTu/GK8vt06fX3J0C/PamPKrIQc0I+/OEoXe8jqguujvdrheuWPOxIh1vo+vS5/77zZ0OenAszNWDdErx3fsHkN9In0/AixTsF43fRdwT6vz3nQp8fH+Hhe6qwLA93bGb9Q89j2byEW5WfMxQXoohdei6/jux7tALGFQ3Suw7BrV0GfDXfg7SbM/Bxi//lRF5eJWKWfVw9uEvX/f3bkHxEREVF14QRMRETkACdgIiIiBzgBExEROVCjSVg20EhxtP5Sck5L3eelfjPhdvu8uKPQ+xt7Qiw2Wu/e89qe3tAnPBBXxF9bo5M5xky5Efr869kZEGsSiIkJfWbqL8TX64Bftt9bggkluV6d3PPa+s+gz7B/YmGRmf95HGJBRp/jU+7HghrSCUP5jfWxJt/SHfrk/BN3prr1/ckQa/GWLgKw9U79t57385rcDclIThOdILS/lx4HN/dYCLeLCMCiIw98eg7EAtvoxI+sEhyv29NjIfbaKj3ubvz3NdDn3ntfhdhJQXhcnT7SO9807oTJKFmlmNx0w+xLVPuDNU9An6tuuAFiN099C2KJ4ToxqMvreDtpiSHfbB7v47i9+O5bMXvqjiVYPKHNa3rP8c3X6Ofd+/mRd6apSjbASHG0vrwe7Kcfw8M9MHlxfSEWXlmejolr+W10AZUXdmKRlSYR+yF2x/dfqPZ9l18KfR5++QWIhRicKlp+MUW1G56CffK8uCPdt/n68bywDnd+G3cXFhZ58L6XINbY5xrc/T+4A5SNg5BImR4H6+7FC2LmNbh//X1LRkGs5Zs6wXPrxfraUv5h1e+GRERERMeAEzAREZEDnICJiIgc4ARMRETkwFGTsIwxM0RkuIhkWGs7VMTuFZHLRSSzottd1lpcSfdhRaTc5zeWxukF7CA/lar2l2FSS6ceWGGloJtOuOheB3euuTsWK7+MOFsnEwx8dSn06RiMO8KUWqyK5G2hE2RmT34W+vhLP4r16GMfe+pE6DPl0w8h1jAQq+l4faoiBY7Igj71amFlr961dNLG9y0SoU/98/xUKeqEFcH2nKF3PwrzKf7lKai5v/2MFQkq9EmEKNO/v2EQ7hyzKLs9xCJbYb/QLjpZI70Qd+9a1e9FiI3rPFS3v/4S+iSFYCJNueC4E5+H98CT06FLXQ8mbz10sa52dm67gdCny+KfINY5OA2PQfTOQwYLYUmtzvh4Gkbq11ZK+2jo02z8rxCzHXF3nL199bkP3aJ/borx9VJTgrfq10lBUgj02ZCLOxEldsIdflIaRqt20wC8bj6XgOPpvJ7nqvakhfOgT+dgCEm57wATkcgYXaXt5UdfgT7RHrzaxfhUrxrd6Wzok/Q5jjl/12CRWqq1vzsOuoFd1kGse8RO1Z4ahTsytZiEY87btTXE0pP0uA/eo8+VKTnymKvMVXCmiAz2E3/SWtul4r+jTr5ERET0/x11ArbWLhUR/LOViIiI/rRj+RzwWmPMGmPMDGNMnSN1MsZMMcYkG2OSy4qxsDxRdTh83JUWcdxR9VNjjtc6qgRj/eweAZ2MSRSRTw5bA64vIllyaOXpfhGJt9ZecuR7OCSsQYJtccHNKpbfRK8RnNFrLdxuRAyuB6SVRUMsz6eYxTNLz4I+XTvg5/rTm32k2qlluDRe4udvlR4hQRArKNdfws4qx8IfSwoSIfZBui56MaflJ9Bna6mfRTU/TgrWa02lFteH+q8dC7ErEvXa97QnsU9ECh5DXsOj13MJPCdTtddfP1PyN++tkQW58HoJtvWYm1SswGdzItsGL5jPdMcdZtYVJUBsVY7ezufnD3Dt2NPXzxpz95dVe1MprqXHeLAARbvgcIjl+ezC9XMJLuRtLMYdmd5I1bsfzWmLBTZ2lOF9fZnbEWJ3x25U7W2lmGcw4OvrIXZ6682qvfItLIpQew+O4ZwmARALy9LXs+jJKaq9/Mq3JGdTerWPu/B6CbbNuXrMFcbpX1vcFtfkL+iIOxH5WxduVmufan//H9zFKv/igxBb1FUXdvmlFPMJQv0s3ncPwTHgm2uyrQwfz34v3v/bB/SxPlQfd11L9+J1M8DPs9YkUOcHFdtS6NNv9fkQm9xM7zz2ytPDoU/0VjyG7OZ4Hjw+pytwbIZqr7tu1hGvdX/qHbC1Nt1a67XWlovISyLS48/cDxER0d/Vn5qAjTHxhzVHiwimmREREdERVeZrSLNFpL+IxBpjUkXkHhHpb4zpIoc+gt4hIldU3yESERH99Rx1ArbWTvATxi98ERERUaXV6G5IgQVWYtcUq1iHc7er9k8vYQJG/9s2QuyDLpgMk365TmSaeNk30Oe+uJ8hdublN6r2Oy8+BX38fVbvtZgEMjpBJxgENsXj7DF3K8Q+aqV3Kel523XQ58OHp0IswoNPoW9yxPDGSdAnulExxJ44R+8u8/Qdz0Gfu27DDzvqvfcLxAp66S+s572vtySxB2pu6AWUWIlI1Uk8LS/QhVy2v4pfsN/TGZP7F/bG3WpSpuikqwZDUqDP523nQmzYqCtV+/F3/RTPCMAkSX9Jdecm9FLtwIbx0OfgK5gQs7Tje6o9+DzckenkZ1ZB7KKYZRDLK9evh6sT+0GfNp0xqWx9hw6qPfxWfN0u+m8fiDV+bRPESjo2Ve3Md/Xrr+yAnyoT1SCgxELCoh2mC0k0ehST7lY+0ARi5WdjguAn1+id3hpfi0WHlrT9GGIDLtZJcO+8Mg36BAjmC5X6udb5Xlf8jbn28/ZC7Kn4ZNU+8wLcwWjWTDyuaD/XOt+kV9/rr4hIbEQ6HsNdOulq2OUroM/KB3A3uPpvr4eYt32iah+cXU932H/kax1LURIRETnACZiIiMgBTsBEREQOcAImIiJyoEaTsEy5laA8Xank5aY6+Sj1X1gBKtOLyQoHzhsHsfgv9WJ7p+sxMWFY814QCynVSSb1AmpBn1/9VPWJ8mCCjOmiE3Jsagb0aReGOwoNbqaTB6JKMSkg/jHcFWpDSQHEEgJ1YkJA25bQpyg+EmK3XTNHtf97Bu5SErl/A8RGLfeTVHZufdXeM1knAJV/5W9PqOphvFaCs/W4m9pEJ0Xl/wv/Ft1ZhklYGeNOglj8Mv0ctB2POwUNb9UXYrZQf33et4KZiEhqGY67AosVemzvzjqwBytvDWmIyXIj2vVXbU8uJineX281xF7PbQaxQeE6oTIwEROKimLwMba+Rh/Xiiu7Qp86mzDh6uQl+Nr6caJO9iu9Xid92S8xga06GK+VoHydhPV+Z/3lkS0zj1jBV3ngjIshlviWTvTret5O6DO8NSbBBRXqqoKxfq51B7x4TfFXYap4sE8S1kZ8PoZF4Xga3FTXbQr0roY+jQPxWre+BCttNfOZwQL87OBW2KIuxNr10hURt5xdD/pEFG2BWMJCPA/bb9bXjuzh+jXr/ebI1zq+AyYiInKAEzAREZEDnICJiIgc4ARMRETkQI0mYZUHeyQvQSdhjOk8WLV3XdYWbpffCpNOzBkYG3yLrpg1IAyrsLzU4xyIjZ/+mWoPatgFf18QVtA5OBeTTP717vuq7bX4N84ZYfsh9sJpeuu/l156CvoMaoiJPGKwao1ZpLedu+2TD6DPZUswseOpLWeqdr2ibOizbyQmIX3UC4/BlqSqdvP/6qSdjLSjb4NZVbzBHslLCFGxK0/W42DvGExUy22OyRPlXTDW+mKdAHNZLFZyurPpJIhNmasTEP2Ou0B8iQ5cjeNn6psvqPZX+fg6Glkb90xZVmuMal+zMhn6DG3UDWLiwcpI//u4v2oHP4/b2mWtwNfRzu0tVLvN7kzos29oG4glDw6BmOTpBMf4x5qrdkpajeyAKeVBHimM1Y/12tP0tnh7hmNVtTIsViZFvfG1Mux+fa2bEIVbtk5pjxWmzpiht+HzN+Y8oXgQA5Ixwerx5/6n2htLsBJWh+BcvP+WulrZjfM+gj7+jsvfta7hMp2sNWQuVm176qczIBado5NQGwRjZcDU8Yl4CKN3QCwoVycfNr9Pn4f0PUzCIiIiOq5wAiYiInKAEzAREZEDldkPOEFEXhOR+nJo/9/p1tppxpgYEZkjIolyaE/gcdZa/Pb/YaxHpCxMz/mpk/VaVeRO/Ly8KA4P86KBSyC2OluvqfSdcyv0KbkKv2T+fprPGpcHd8/wJOJ6Ta2pURBr9IpeN43w4Be393hxLSP0H3tUe24u7grlbz3Q26cjxIIm6HWwVitwLbdf+80QuzX+S9W+fOBN0CfzLFwriVnTEGKFDfXazK7Bes2w+DFcQ6xO1ueUp07Ua76h+3Gdzc8GMNKzK543j9G3PfcdPG/1nsQxdes3uphMm8DV0Me0x7XphaMx/2HIAr2+2zEUd2TaWYbFV3b+TxcpuHkFFrhpGYLFVzwJ+JzXu1Lv2pP06Q7os75/DsROr6uLbLzZZxj02dcJXzPh6Y0gFnxQj8+tE/V6ZnFKzbznsEakLFQf887x+hpSOxWvdQXt8HE26oK5LO/v6qLab88fAH1yb8Jr3bZPz1LtFoFY8Mc0xrXcBecnQmz0vDWq3S0Ex9ymUiy8kvZf/Rxc8+NE6NPcsxZigfViIZYxWp+v0ctxt6KQ7ngNTgzSeQb/7nMp9DF+lm4LT8JxH1Coi7tsH61zE4oeP7bdkMpE5BZrbXsR6Ski1xhj2ovInSKyyFrbSkQWVbSJiIioEo46AVtr91prV1X8O1dENohIIxEZKSKzKrrNEpFR1XSMREREfzl/6PMYY0yiiHQVkeUiUt9a+9tnI2ly6CNqf7eZYoxJNsYklxXhxtJE1UGNu2KOO6p+HHP0R1V6AjbG1BaR90XkRmutWsix1lo5tD4MrLXTrbVJ1tqkwFAs/E1UHdS4C+G4o+rHMUd/VKUKcRhjguTQ5Pumtfa3qg7pxph4a+1eY0y8iOA3tX3vp1wksEjP077f007rh/N4wxb4xfzXN/SAWMs7Dqp2g5dToc/Yhish9vFpegej4WuzoM+FUd9CLEgwS6dU9Mr9+GGXQ58WL2+H2MSGy1X7ja5YeGDsWrzdoFpLIFY/QCc+pPvZAGb9q1hQ4yKPjnW+Ggs37L0Ki49svDEcj6G+zseLmq93G8nAXK5q4ym1UmuvTsTwhugiCQcG4k4rbeJxSP+wpTnEWj2nk6JaPIK7cA2uj8khX16gC1B0XIGFK26s+zLEAvwUJMgt16+bx86bAH02XYEJMeOSdBLOmr44cXT6AZ+sG+u+DrFQo/+eX1uK4+KzJ06F2MyAVqrd6rqN0CfqGkwMSr0HQqDe+/pcZeLmUtXCWJGAEv2cRPgkmKb7KbDhicFzfeAzTPxpuEgXY7FP4W5IJ4Xiu/B9V+iLQePvsJjJPfH43PpLmfS5lMutfcZAnz3PYeLfVa2XqvZH/dpBn5hvIyD2VAIWFIrw6NdxKr6E5LnnRkHM6/Owe1+PhUxSx8VBbNODuLNSaJh+/Ud+5XP9xZzJ/3PUd8DGGCMir4jIBmvtE4f96GMRmVzx78kiMtf3tkRERORfZd4B9xGRSSKy1hizuiJ2l4g8IiLvGGMuFZGdIoLfXyAiIiK/jjoBW2u/FZEjFVA98whxIiIi+h2shEVERORAje6GJCJivHrlvqCB/hvg/D7fw21K/ZQk+jkYq+CI0Q9newpWTnnnkcEQaztfJ8jMu6w/9ImbiRV8RtfGJJ2Ba3VVl8BGtaHPp6uwytX2aXqHkMaLd0OfD4Zg4tmnr2ElrNkt5qt2v09vhj7hsfihRoPlOgEkfTJ+s2zneVj9KzgVk0min9OJCMUP6ccT8AVWp6ku3hAj2c11skau3pxJHkz6EG73bU5riG0KwHMSkK+zLLZmYKLGxw/hh0XNPtEVoNZc3B769LmxO8R+PPNpiA3/Ue98UzcRE6DivsO/t398/2TVjv9yK/RZNyoGf9+zl0Dsq66zVPvqF6+GPuVYUE4id+jkpANX4DnedAUm5QRswsfT8m1d9W3fg/t0h2V+snSqgTUi5YH6NZbWTz/OO/p/Crd7KwVf4xm98JjNF/q+Uuc3hT7FazH7J+lrnYS65mq8ftw3bRDEpjVaDLHrfh2q2kVtMFGu6CdM8np91gjV7vnlj9Dnl6H1IHbh7LEQ+7C1Tj0a9O110CfaN1tMRIJ9LucpE/HYf72wAcS8ufhcNHlAZ/alP+qTxPvZkccc3wETERE5wAmYiIjIAU7AREREDtT4GrCvIJ8vxkcF4g4eH6R0gVjON7hOFP6M/uy9ayQWRDj72Z8h9talei3jYBssWDCk1h6IFZTj2kLxO/q4rn3ybeizpiAB7+t1vUa58gFc+9tzPa7bfp04FWI7y3S/xLl4nPtwuVFSp+h12eCVuA6TOPd3N7z6P3tPraPa3i/1Gl5ZdlCl7qcqeMpEwvbpNbOSKJ1XsLkI14Byy0IhVl6IL5m0h3Xbm405C72n4jrX4of6qPb+kfj38Ef9n4DYfj+7tIQv0LkGne7AwgK1ArDIQ75PRYKfnugCfYqG4XG92uFJiPmOu6jtWAFmfzs8NxkD9LjLScQ159azMAfDU4BrnDtH6ryPwIX65+W57i55tX/Vv3vNyXgdyC7EMefdgXkkW+7W59FbWgR9ksZsgdjP1+j8k72nYuGVFxp8AbFUPzu47ZilC6ic/zTeblMBXqc7jNXX0o+vPgP6ZI3Ba/Bbzfxd6/S1rdHbeF3J7ILHXthIr8sW1sf13obf4esl6CCe55RhumCHWaJ/bn9nzPEdMBERkQOcgImIiBzgBExEROQAJ2AiIiIHzKGdBGtGWHyCbXaRLgpRrnOPpDQCj+eqobi4//EeLGbhfV4v+BfG4N8XwXl4/33u0DsR/ZqPhRQO3ItfdJ8363mIrSvVC/7/HnMR9Ml9EHfeKZmjj73dFNw9p6QcF/PT/4O783w+Qx/XhhLM2rmr5wiIbXxMV0mI/Qq/RG/8JABZP3/GhWfqJIedY/QN0+59Vop/TT1SidMqFVY/wbacqMddbjN9PCH78UFMOncRxL7d1wJi9kZdnCSnDRYrKYjF+598jS6YsjATd4XZ/wKOu48fexxic/P0cb17Phb+KH0sF2L5r+qddqIuwR3Edu6rA7EGMzFZ6MMXp6n2N0VYCOfFAWdBbOMN+hiiN+KwKA/wE/OTxxe9XY+7fRfrHYF+vXW6FG7dU+3jLiw+wSZeosdcSZS+9njD8Fp02in4ul+VhtVLombqpMbScBxf3iB8mKHnp+nblePtQp7FJLgPX5gGsRSvvu0dZ18EfYKeOQixtBm6Ck7rKzZAn5/2YqGl6LcxGe2TJ3Qy4M4yTPL7Z3/cpemXf+iky9jleDvfHZNEREoj8JzGbNBjLmOyvr7vvP1FKdq22++Y4ztgIiIiBzgBExEROcAJmIiIyAFOwERERA4cNQnLGJMgIq+JSH0RsSIy3Vo7zRhzr4hcLiKZFV3vstbO938vh0RGNLInd7tGxZo/vlG1d17TEm6XegbuhBK7BnfT2TVc/z1RexsurHcftxZiGefrpKs7Fn4Efa6YhTu7lLTCZKpmL+u19szOfirbYEgSh/yq2vbiYOhzwwI8vXc/cBnECkfqHWESbsfqLcVNMLGmJFIneRXWxb/P/CVh1dmE58FToqsg5Sfo3Xl+XjRN8g6k1EgSVkRkY5t0yrUq1ugBXSUo7VZMZts5FKvx1FuJJyB1gH4N1dqByXJth2+GWOFknVQy+XPcceahZyZCzDNgH8RiH9GDqqQOjp+8hnhcDSbuUG07CV8zkxd9A7En750Asazhepy18pNsuL8rjruyMD0MSmvhsAjOwetUnY1YNc+U6ecnr6ked2sXTJO8/dU/7iKiGttufa5XMc+t6aodcA8mO+0+FXexCk/Hx37gJB0LPoiv1fqn4o5q4Zfr29311UfQ58rnroVYYL/9EGvwL93ePQAfj5/ia5I0SVcj3DMSk6tu+24BxK6eeSXEQk/Wr4XoZ3GuKI7CMV0Wqs9XXgIOiajt+FqP2ogV2cRnDs1tGanaaxYdecxVpi5bmYjcYq1dZYyJEJGVxpjfzs6T1lqsD0ZERES/66gTsLV2r4jsrfh3rjFmg4j42YyXiIiIKusPrQEbYxJFpKuI/PbF2WuNMWuMMTOMMfjZ0qHbTDHGJBtjkktK8/11Iapyh4+7Uo47qgFqzJVwzNHRVXoCNsbUFpH3ReRGa22OiDwvIi1EpIsceoeM1QFExFo73VqbZK1NCg7CnTeIqsPh4y6I445qgBpzwRxzdHSV2pvLGBMkhybfN621H4iIWGvTD/v5SyLyydHupzzQSHGMLl9zYex3qj3neV1VRERkYCgmncy/tj/Ems7T7W4ProA+q2/vCrGQ/BTVTgrGbc46D9wIsZsbYoWu+27TFabis7GqVr3nUiC2faqughSZtx369A7FSkZRk7By0bPNP1Dte3OGQZ/iOnEQC7lyr2qnbsUtulrOxuS3S2bMhdjjj4xX7ZzB+h1B2U9+srmqixEpD9J/a15Wf6lqv/o4JrqMjNwBsQ8WDYRYnZ91wtM5V38Ffb66tS/Ewor1tmyDwtOgz7PD90LsPy3xfD+6+XTVDmiAz2+rf+O42/BYB9WOLMJx5++4npyUCbH7m+vH/VrWydCnLBQTdQ6erpO1vLlY4qrlW3hdOH/GZxCb9qyuenSwu84CKv2xZir/lQcaKYzVyT//SvxStedM7QG3OydqG8Q+uHwAxILyddJd/zu/hT4/3pyEB2b189YqCBPlksZgouoFcd9D7Il9g1S74VeY7BT8FF671z7dUbVjLI65zsF5ELv4PLzedgvboY9pwxDoU9gXK4kFTtQJccVrcdvE4GzcTvO8txdC7PEZeswVd9PHXrbqyNe6o74DNsYYEXlFRDZYa584LH54La/RIrLuaPdFREREh1TmHXAfEZkkImuNMasrYneJyARjTBc59NWkHSJyRTUcHxER0V9SZbKgvxURf99h+t3v/BIREdGR1ehuSOFxCbbtOTfpWIb+nN33C9IiIkV1cP73hmCszla9PpkXj39f1PsG165y2+t12vC9uC4SmHYQYr/8ux7EAkL1WlWDD3BLDX+7NDX4Un9pPq8Drr+GZuBxBWRjbMNNuM7mq953uF7jK+anAxArTMAvupf52YkldJ9+Lva30+dh87tPSkFGzRTiCK+XYNucq8ddrXQ97krD8DHkJWCsDOskSN11+r7y4vHcxi/GQgZ5rfWuSWFpWDAlMBtjG6+Ohpgp0aeywff4ui6OxMcTt1w/xzntcCen8AzMiQjIx1yAzdfq59gE4tpX3Gd+tpjxGQUxyzOgS0ErzKXw+rlWBOXp5yKniV5P3vjhk1KQWf3jLjwuwbYdrcdccK5+TgJK8TkqivZz/avr51q3RV9nCmNwzMUt9zPmWurnNzgH19aD9uM1ZdPlkRCT2vq28fNx7d6L9WAk5kd9DS5ogder4Gw/Y67Az5i7RY+ncj/5A3F+djoyPqe+7nKcF0ri8TH75jCJiISl6zyDzC76IrFlzhNHvNaxFCUREZEDnICJiIgc4ARMRETkACdgIiIiB2o0CcsYkykiO0UkVkSyauwXVy0ee9Voaq3FahHVgOPOuePp2Gtk3HHMOXc8HfsRx1yNTsD/90uNSbbW+inTcvzjsZ+4TuTHz2M/MZ3Ij53HXv34ETQREZEDnICJiIgccDUBT3f0e6sCj/3EdSI/fh77ielEfuw89mrmZA2YiIjo744fQRMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHAh0fQBERH81sbGxNjEx0fVh0HFg5cqVWdbaOH8/4wRMRFTFEhMTJTk52fVh0HHAGLPzSD/jR9BEREQOcAImIiJygBMwEVEVMMZMMcYkG2OSMzMzXR8OnQA4ARMRVQFr7XRrbZK1Nikuzm/ODZHCCZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMgBTsBEREQOcAImIqoCxpgpxphkY0xyZmam68OhEwAnYCKiKmCtnW6tTbLWJsXFxbk+HDoBcAImIiJygBMwERGRA5yAiYiIHOAETERE5AAnYCIiIgc4ARMRETnACZiIiMiBY5qAjTGDjTGbjDFbjTF3VtVBERER/dUF/tkbGmMCROR/IjJARFJFZIUx5mNr7S9H/GVhtWxwRIyKlQfrPp4SvJ0nuhRidl8Qdowp031y8OFFxeZBLHdvbdUujbR4DEUGYhExBRDLzwhX7ZC4IuhTkBsKsZioXNXO2RMBffweVzEeV1RMvr6vzFrQJyAGz2lJkT6nIaH4ZJRnBmOsrhdiNi9A9wnWx16274B48/Lx4KtBpcYdng6xEfi4PAcCIOaNLtd9cvDv2pC6OA5K00N0OwqPwd/zGxpVDLGSLH1fHj/Pb2k+vmZqRxaqdvFeHJslkXgMAYUQkrBYHSzKDIM+ZZHlEDPF+nx5wv2c9yw87+WxfsZdrs+4C/Uz7nJrZtwRHc2fnoBFpIeIbLXWbhcRMca8LSIjReSIE3BwRIy0OfcmFcttpvvU3oG3Cx+VDrGy1+tBrPz8fapd+hlWoxl22TcQW/xgb9XecxZeJCI248Xr1PErIbbimW6q3eKKjdBn5ZK2EBs/fKlqf3VvX+iTOhAn4Igt+BQOumCZvq8XekKfyLF7ILZzUwPVbtEO+xS80BBjF2RDrOQHPeEVNNF/HKU9NA1uU12CI2Kk9Rg97vKa6j7he/GabM84ALHwd3CW3DdCTzwRi8OhT4sLN0Ms7bEWqp0yHJ/f2ltw3LUZgfe1c0Yr1a41YS/+vmX43PUb/LNqb/lPe+iTMgAnvzrr8Xy1v2S9am96/iTos38wztwBW/T5CuuyH/rUnonnPe8iHHfepXrc5bbRf4ikPfA03IbIlWP5CLqRiKQc1k6tiCmH10ctK8z3/TFRteC4I6LjXbUnYR1eHzUwDD8KJaoOHHdEdLw7lo+gd4tIwmHtxhWxIzMi3mD90VXkNv2xW+xqXKNNGYBrSQkbcyGWWqwX9uJX4xrt/F34EdvtD7yj2jMuPhv6FMXhR25jYlZAbOsc3V7WuzP0abYY11Z/6Kk/i3/w8RehzwMTJ0OsNAo/thwVrT8aX/daCPTZ2As/Hmzzij73v57TGPoMuiMZYpuuxo/UTXmOah9op9e0s2pwGc6UiwT6fPIZuVW3Y1fhx5k7++HLo1Ey7nLjnaj/jo3YhrdbtbwVxG546DPV/nRyP+gjFsdws/H7IJY/R/fbclIn6NPiM3xtLayvx8E9j38EfV69dRTEQjPwo+STI3eqduaHODYPtukAscSP9LnfnR8DfZrehitbqffjOQ1N0/eVdTBSHxOXf+k4cizvgFeISCtjTDNjTLCIjBeRj6vmsIiIiP7a/vQ7YGttmTHmWhH5QkQCRGSGtXb9UW5GREREcmwfQYu1dr6IzK+iYyEiIvrbOKYJ+A8rFwks0OtC1972vmpvLaoPNxsbgutuD94wFGKXtPxetee2Ph36BHyI68mvzT9Ztacux/XXUIPfOXwxC9fsNk/toto39PsC+sz5ejDE9s1rotqPzB4IfZ798TmIpXkxwej+HSNUe9PzDaDP3T0/hdiLX49W7bJauIa39cJmEGvzGn7V6tOl3XWgnv4ebNk3+FWv6mR8ft3Ft3yi2suz8XG1Dcb117l3dIHYpQnfqva8hjjuQjNw7fHzoXqd9l+LX4M+pRZfos/uOQNimx9oqdp3DMHVoFd+HgmxYJ+X1ruDToE+9331MsTWF8MXHuSzDL2+u/HRBOhz86n49/qs7fq1XNId16ozbm0KsS7P/ASxhe/2UO3Srvq+yr+q2XFH9HtYipKIiMgBTsBEREQOcAImIiJygBMwERGRA8ZaTLSpLrXrNLZd+t+gYmHpOjkn9Qy9MYKISKPFWEowpwUmU+3roBNdQvdj4ktBJywgEBWpk23qnbMN+kjXdhAKSMmAmK2jv/iffmos9Ak9gOc893xdQCA3A89Dm+vW4O/r2gaPa1OKanvbYDJMXgKev8hN+hh2jsSCCNbPn2zNZmOt7tJ6uvBGYJ4uPvLDxpcku2BPjVRFiIhqbLv1uV7FQvbpcbdzGG5+0Xihn802GuFmBblN9UkJxJtJUV2MlUbohKBWd6+GPsV9sWBK2LpUiJW0jFftrC5Yj7rORtzEYcfZOsnLBuHYbHv7BogV9sPiK+E/btf31RgTKg+2i4RY7VR9XKln4Nj0d04bLzgIsbLauhhPQJGuQf7D+hclJ7/6x11SUpJNTsaiNfT3Y4xZaa1N8vczvgMmIiJygBMwERGRA5yAiYiIHOAETERE5ECNVsIqDzKSF683907rWcunD1aq2XEDJoaUHsR+oWn64ZRhHoqErcMEj9ev1BWmbo8bDX22D8Ekneav4Q46my7X2TblEWXQp1+HTRBbNVdXEfr66kehz5XhIyC2NwmTteoX643Xfx2J1bKCcjEPJX20TjBq8D5W/xrzH6zs9YIHq5J59D7oUlJH33fRE7jJe3Xxhhg52FxvbF/QR4+VAMxPkm2X4TEGpeB5C9YbP/lNVAtLxzF838TZqj3rmVOhz4HWuJNVaAqOxazOerBnt8HnLmQojtfwpfX0MV3yBvR5pcFZEMtpgpeO4AN696y9fXHclUbgeUjvqR9jFL48pNX5GExObAmxiK36Octroq8TxY/X3LgjOhq+AyYiInKAEzAREZEDnICJiIgcOKY1YGPMDhHJFRGviJQd6cvGREREpFVFEtbp1tqsynQMKLJSZ7OuiBRYqCvXZJ2MSRrt47Hi1CZTD2JF5TrRp3nrNOhzVzPchu/Wtnr7uJGr1kKfk8Nwe7d2UyAkBVZnH53y9bXQJzIQM37mXPm4al/RFrcjvOrn5RBrFYSPJ+FO/cFGphcTwYb+eBXEwpbr5J5T7/4W+nxxfi+I3TnnPYg99MG5qh21SScvpelCVNUqsMhK3Q36FwYV6MSfrO6YtFS//kGIZeyPO/ovbI2V2y5pvwxir3bS1dXiFmOSVIfQFIhdeDve1+4yXWHq8Z2DjnqYIiL/u+Ip1b6705nQp8mivRCLL8fX5D0NP1ftX0qw/NfNq8dCrO6netzlDsmFPrnXYlWtwS/9DLGlKd1UO26l/nkGPjVEzvAjaCIiIgeOdQK2IvKlMWalMcbP+0ERY8wUY0yyMSa5tJR/flLNOHzclZRw3BHR8edYP4Lua63dbYypJyILjDEbrbVLD+9grZ0uItNFRCIiG9fczg/0t3b4uIvkuCOi49AxTcDW2t0V/88wxnwoIj1EZOmR+ntDjGS30Gu+sRN2qfbkBrjjT4NAXBt7+PWJEAvJ0dfZqA6489H8g50hNnKVXmeb+hOuv96XhGvAnYJxHWzCxCtUO/As3D3nrFPWQ+zFLF2E4e51uP56wYIrIHbfaR9CrHmEXrO7+uyLoY9nKBZzyG+q10E/n94H+jR++leIvZ7aE2It3j6g2ptv1wVQvF9iIZXq4g0xkt1Mr/nmDclT7eHNNsLtyv1U1FixGnMPgnP1Y0ltFAx9XlqL5/KGlYtV++mfT4c+bRriTlP1Y/Hc3XiBfj2knoVVaFqdvh1i09J0kY0OX+P663uru0NsZOfVEIsw+nw9NWEc9Cm8HF8P3ua6HT0Pi8tsvAbzGALy60As/jv9mt95jR7T3u9qbtwRHc2f/gjaGFPLGBPx279FZKCIrKuqAyMiIvorO5Z3wPVF5ENjzG/385a19vPfvwkRERGJHMMEbK3dLiL4eS4REREdFb+GRERE5ECN7oYkIoe+uHSY7Rn6y/pdEnfCTRbmdoBYyBhMTukeq5OpggwWV3ikwQqInd22v2p/sPZ56NMyEP9WCTKYbFP/YZ2k9GYCFsoIMXhfI8L1ljpnJ+EOQ89+8zrEBobhV2w8ond8CXl6P/R5tBEmby3La6XaW7th0YmD/fMgFtCjPcR+PVcnAQVt0z83xTX4t1+5SECJHnh2g0706dYRx90nmZ0glnkyJvHUTtDPXbgXH9t73V+C2C1dh6l2vdk50OeBph9BLNwEQWzntfq4ruuI465bGCbQdQjWRWEmdB8JfS5dgAmBF0Yn43F5dKLbtrGYTCVl+JqM6qbr+GTVwgIebW/AxMWSzq0gltZPJ/uF+dSuMfl8z0HHD45GIiIiBzgBExFVgcOLv2RmZro+HDoBcAImIqoC1trp1toka21SXFwlaobT3x4nYCIiIgdqNAnLBooUxuldcQIDdfLIx9l6NxMRkQnRuAtQh7BUiO0siVXtF+fijjC/9sMEj4836q8vry8x0KfYYiWecMEkrDcSl6h2djn+jZNdjokoY7bo5Jf5yR9Bnx+L8biyy3FbodiAWqr9fsvPoM+5W4dA7LrGC1V73kysvBV4MVZ1LI3A4wpP0/26X6QrnM19C6uUVRfrESkL1cdYXE8/B/ctxeSjm/t8CbHdLaMg1ipaf9y45WlMShu+62aIff3zVNWen98a+vxY1AxiXUL2QGxF3xdVe0MJjs0Vhc0hdsHXuhLW9yumQZ/lxQ0gtt+LiWBNAnXs5/PxvjouxjEVHKCfi9BMfM0U924HscwuIRCru07vRlZ+g07wCpinf07kEt8BExEROcAJmIiIyAFOwERERA7U6BpwQJGVuhv0WmrtgbpIxNLHcGedrvdgkYSZJ7WAWNbFJ6v2VTfi2ueNdXZAbPCIC1X7jY+mQ59wD66peS0WZRjaWO8cExAdDX2af1kAsQXt5un7Of086DNz4SyIRfg5rqMdk4iIJxwLalx7q16fe/n6Z6HPv6ZcDrHQ1Tsglt9LPz+rXtFFLQqyFvk91urgKbMSnqnXGUsa6F1/6r6ARSNWdWoCsToXHIDYxuEnqXbmabjGv3kEFncZMvF61b7+pbehT5NA/H1ZXsxHmNhU76YVWB+zcOu8j/kCWwfqAiGDfI5JROTal96BWEwArqUW++weNTrhFOjTtsFeiO24WK9N9xi5Fvr8fBCL8TR5G68L3vgY1c6eVV+17T5cuyZyhe+AiYiIHOAETERE5AAnYCIiIgc4ARMRETlw1CQsY8wMERkuIhnW2g4VsRgRmSMiiSKyQ0TGWWsxW8SHp6RcwlN1AtLsVu+rdvL9mAwTF4A7/mRdPB5i9T/bpdrRt2Cy05CWvSFmC39Rbd9CFiIiu8owaal+ABYCKDtdFxLxLN8IfU6P2gCxwU2S9DGVbYU+9fwcV4YXz01to4tg7L8IE9uit2AhjLvPn6PaD/UbDn2Cs9ZB7NK1+HheGa2LoqRdoM9V+QJMYKsuHq9IcI5OXJrT5RXV3vRMPbhdhAfP0T+HYBJa7Pd6Z67TbsBdh3x33BIRCSzUxUnOroXjdWkRjrFwg4VPPO19dgbKxvFaK7AYYsNb9VXtgKKfoc+oWnhfK4sx+S/Ko89xyUBM/jtYD5Og6p6mE7N234wFQ+qvxXE3dPkOiM2bpJPRCsZlq3b5D5ggR+RKZd4BzxSRwT6xO0VkkbW2lYgsqmgTERFRJR11ArbWLhUR3w1lR4rIb9+JmSUio6r2sIiIiP7a/uwacH1r7W+fG6WJSP0jdTx8i67SMvyIjag6HD7uSkrwY3oiIteOOQnLWmtFBCv0//+f/98WXUGB4cf664gq5fBxFxyMa+dERK792UpY6caYeGvtXmNMvIhkVOZG5SEBktdUXwzPP3m0vuOhuPvLvlOw8k9Af6zqc94NOuFpaC1Mhnl5yGiIPfSY3klmUMMu0Ec8ARC6aTMmhjz6iq54lFseCn06B2NSy4unnKPv540Xoc+ghlhZyARhMszNG35S7XfufQz6XLDhQoitL2ikAx78+yz1Rkysebmrn2FkU1Qz8cmWqp2u85aqlfWIlNbWx3jr6RNUe/dwn8cuInmJmCgW3AzPiXe8vu9hUZjItK7ZOIiNePs71fY37kwIJmGlvNUSYmPeXK3a4Z4S6DM8Yg3EbjlpimpPfB2rx/k9Lj/jrt5SPdbj/70N+vy4rA3Eyvfq6lVtM3xXvEQyzsNKWPPPwD/oPUV6l7SG9+rndRduJEXkzJ99B/yxiEyu+PdkEZlbNYdDRET093DUCdgYM1tElolIG2NMqjHmUhF5REQGGGO2iMhZFW0iIiKqpKN+BG2tnXCEH51ZxcdCRET0t8FKWERERA7U6HaE1iNSGq7n/E23Jqp2/HeY+BKShofZY8AmiOV5dRJIz49vhj4D7sBElCdSBumAwZyygJaJEJs2BhNK3pr3smoX2Rzok+8nZzz6vzpp6coNE6FPlMGkloAGWMFp2mkDVPuNH96DPgPjsULXabV1bN6EvtCnuA4efPlJWLkoMP2gam+crJ+b4oewmlN1sR4j3mD9+7Ze0lC16/2EFZIKGuLfp2E9siAW4NFj9uapV0CfnDswaXDqMj3u2oZiUp9plgCxpndhRaten2LlNF9f5beF2KYrdZLXPYvPgT5tQ/E1U96pFcSyLtOJX7d//C4eRC8MdY7UiVOvjR0AfayfK1VeUlOIBWfrbRK3TtSVt4oe5HsOOn5wNBIRETnACZiIiMgBTsBEREQO1OgacECJlYgUvX5VFKvXBjPH58Lt/tPlY4i9k34yxFacpnfgeWrF69Bnewmume46Xf8d8syOb6FPhPkGYjF+dkPy+ixWXdDjbOjz6LIPIXZXo/mq/Y+Bp0OfF3fiMYT62RmnridMtcsFj3PZJV0hNutCvZPMQ5fOxj7nDoLY6HeXQuzh74aqduQ6fV4yimpuDdh4rQTl63XaiJ36OU8dhmvADRrieu/BPCz+0OwePaYDn8cCMOt2NIRY+7v12ueZyZh70DAIcx3OCk+FWJHVa/NXnIY5BM3eSYPYP3rrcfdRL1zb/ecv30NMBGMdgvV5KLeYL7DtBT/r0OE61mwCnj/vtVEQq/MiVnP54afWqh27XD/PWfk1N+6IjobvgImIiBzgBExEROQAJ2AiIiIHOAETERE5UKNJWN4gI/nxeheVnPb6i/Ozk2bC7cI9pRBbuRF3TWrTShc7+C4vG/q8tw6Tjz775VnVvubCa6HPU7Oeg1i9ANwhqf07V6t205Pw2LeUxkHshZTTVPvljXOgzyXnXQOxR9+ajscVov+uavn5ZdAnuifuZhOeoM/XtHvPgz61p+2G2MNfD4dYi7f1Dla7rtQ7QNm5WHCluniDjeQ21kN9Xx9dNGJaX0w4SymtC7En5w+DWEGiTiTcm4Y7YInF5J+xi1ep9sybRkKfsx9bBLEIDyZr9fhIj9kGp/hJzis7ALGHl+jnbtYqHE//vA4Li5z9XzyupBCdMNb1+RugT9EpmOwWkK/Ha+hzWGCj4MGDENvyAxbCafGhvgbs0C9HKVtcc+OO6Gj4DpiIiMgBTsBEREQOcAImIiJyoDL7Ac8wxmQYY9YdFrvXGLPbGLO64r+hv3cfREREpFUmCWumiDwrIq/5xJ+01k79I7/MiIjxLY7jkxPhMZgk8UMh7rYzoutqiK1/OF61t+XFQp+NZ7wMsZHthqj2pB/nQZ9mgZhw5U95hE4yeXPGNOgT4cHTPqyNrvY1qsc46HP3N7Mg1jLIz9ZKvuCki9xwHe6Q1DxYJ/e81wSrjW05NQhirTvVgdiBNrVUO+AXn8Skwpr78MVTLhKcp89BULpOQsssi4Tb7SrGJKw6bfdDrLSDTjirU46PbXbPmRC7prtOujp7CSY2XRi1FmIimEBnQ/S4u//BV/3cDk0d/plqX9QVK7e1/wyPYVDt9RAr9Uk087eDUXzLTIg1jdDJYT+EtYY+bSbsglj99vgLsrpEqHZYsj4mTwE/9KPjx1FHo7V2qYjgVYeIiIj+tGP5c/BaY8yaio+o8S1QBWPMFGNMsjEmubQo/xh+HVHlcdwR0fHuz07Az4tICxHpIiJ7ReTxI3W01k631iZZa5OCQmsdqRtRleK4I6Lj3Z8qxGGt/b9tSIwxL4nIJ5W5nTdIJDfBZ8736LWrOftPgdudUycZYvUCcyDWrfZO1f7vW2OgT7+e0RBb+Msbqr29DLrIhlL8W6V7CMY2DtUFOzaV4in2Cv6CW1N0HttHftah15RgEYNML95XbZ/D2jrwJehz2lo8N3e3/FS1l87CNeBaw3GN/mBLPA/BPk9P/b57VHvPW1igpLqUB4gUxuhjDCjQfR5YjGufF/b5DmKn1N8JsUKvXhdf91xH6HPG6ViUYvaPuujFrrIY6LOwoDHExkdgQY3Vg59R7c/ycfelTUXxELtuSzfV/nzVC9Dnm0IsjPFVPu5qdF0dfW6+uewx6NPjw5sh1rWXLu4Sl4zjKW8wntO8hpiXEZyt1/ojBuodoAI+rrlxR3Q0f+odsDHm8FfyaBFZd6S+REREhI76DtgYM1tE+otIrDEmVUTuEZH+xpguImJFZIeIYK06IiIiOqKjTsDW2gl+wq9Uw7EQERH9bfBLcUREVeDwzPvMTPy+M5GvGt0NKajASv1kvVtJ13O2qvY3z2AS1vn3/ACxF9q3h1jalUmqfeqkn6DPi42XQez0S65T7denPwl9ov0Uz/BaTEg6u3EP1Q6IjoY+fb/eA7G3m32l2v0vvxL6vPE8Hldl9nYZ2rg7xCLr4k5RVz8xUbVn3IgJOf++BXdWavr8JojlnKmLKWR/pJOCvAexoEd1CSixErVTJ9+EjtBfba/1aBTcbk/3aIjtHoTjIHO0HosFIzFBcHNP3zo2IgOm6Od41KMLoE+3sB0Qyy4vhNi4hN6qHdC6BfTJmYaj5ZfeOgHxzEmYLHbX9JkQaxWcBrFin3ovE5v0hT5t6/0Kse/G6PHZ7eo10Gfj4ydBrOH72yFW0lInmh14r75qlx+ovnFnrZ0uItNFRJKSkipRIYf+7vgOmIiIyAFOwERERA5wAiYiInKAEzAREZEDNZqEZcrKJWifLkH0TMIXqp39n/lwu/1eTJzIOacbxBp9qpObhl3/M/QZ3AyTvIJLdKWtxoG1oU+GF+sJe/xUtPJNfjHZudDHnyGt+qh2SOEq6OPvuFLL8iCWV64T3QJaJEIfb2wExC7p8r1qPzpoJPQJT8FzOuwnTCr79Oxo1S5+Sj+H5gs/5caqifFaCcrTv+/V9npnqZ0v425IJRYrLd1xweUQi1+8T7XrX4HnY+RJZ0AsJFuPuxtf2gF91pdgwlWAGIjJKT6Vorbuhi6XJeKuRkM76uMKysbn98wwrMD2YzEeQkG5TnTzdGwDfTJOwbLxJ038RbX3XNkE+kTtxoSrPotwh6QFt+nKYQdP168F78LKpC0S1Qy+AyYiInKAEzAREZEDnICJiIgc4ARMRETkQI0mYXnDAiS7fbSKTeiot+HLHIXbnGX1wy3EYifth1i9m3QyTL/QLOjzQgvcWu3OT95R7UENu0AfE4inauBqPIbrP9XbCHr81Ko6JRQrJX2beJFq3zfvLegzqCFWtBIPJgqdvKpEte9fMAf6TFp5CcRyvaGqbfIKoM+ea/AYPu0dCjFbkq7adR5spdoBe2vubz9vsEdyG4eo2LV9x6t22tAEuF1xNCY7lTTCAkflz+hEuPNif4Q+TzcaBbGJP6xXbX/jzhMeDjHzaTTEWjyzWd9O8DhPC8NEpnfq9lPt65Z/D338HZe/cbftDZ0I9u93cJfS++eOhdiyH/Vrvk0hvm4PDMDKXt8NweTMsIJtqt1yXyPVzkpngSo6fvAdMBERkQOcgImIiBzgBExEROTAUdeAjTEJIvKaiNQXESsi062104wxMSIyR0QSRWSHiIyz1h74vfuyHpHScL2utvvCdqodlI9rNIEZuNZzW98vIDYjVe++kvTuzXhfE3Bd799bR6l2iCcF+nia49rxohGNIHbpN3pdL7scixjsx5BsvL2Wak/dPQj6mCBcO/ZEYUGNlRfEqfb1n+FuUhe3xV2h2oTsVe1Fw3tBH+vnTzabiOfBGn2et50XptrFKTX3t5+xIh6fuh97ztbFHsqD8Xb5zbBYSP8uGyCWWaQLpNw57VK8r3/ievq0LboIRr1QLCxhGtbH2EV4XMMWrVbtRgG429VrB3tAbPsDeo35xg8uhj4tglbiMbRpDrFmL+rnvM9rO6DPgDNwh7KeEXpHtOeSx0CfwlgcL6EdcdwFZev8hy2T9dp/8YN8z0HHj8qMxjIRucVa215EeorINcaY9iJyp4gssta2EpFFFW0iIiKqhKNOwNbavdbaVRX/zhWRDSLSSERGishv9fxmicioajpGIiKiv5w/9HmMMSZRRLqKyHIRqW+t/e0zyzQ59BG1v9tMMcYkG2OSywqxnjJRdTh83JUWc9wR0fGn0hOwMaa2iLwvIjdaa9VipLXWivj54uGhn0231iZZa5MCw2r560JU5Q4fd0EhHHdEdPypVCEOY0yQHJp837TWflARTjfGxFtr9xpj4kUk42j34ymxUnu3LqqR1Vlnvxw4We9eIiIyqA0mvty3djjEEm/WSUq9Zm+EPpfVXwqx/56kk1Mmb8CCBWfXwqSlAIMJXdnluvDG5MtvhD79H8ViBy/11bvzPJ50KvQZ+BMWKLggajHEwo0ukpBShsc5+38DIeYN0f16XI474+y+AD/oSH8Ch9GBfTo5LHKV/lsvwM9uOtXFlFsJztWZb6W19GPN6oyJTeF1MXFq6fcnQazVbP0Ou+QOTJYbkrgJYlvP0Ilpjb7G4hb3xL8OMX+2l+lEsNsmXQF9Uq7H7L/W9TNVu+yaNOhTezEm+t3R6DWIRXj0azvNi0VEVk/tgjHRscCL8VISfzfe15678fHk74hS7frf6J9n5fnZSYrIkaO+AzbGGBF5RUQ2WGufOOxHH4vI5Ip/TxaRuVV/eERERH9NlXkH3EdEJonIWmPM6orYXSLyiIi8Y4y5VER2isi4ajlCIiKiv6CjTsDW2m9F/O0ALiIiZ1bt4RAREf098FvpREREDtTobkgiItaj30yXROrk6Ud7vA+38fp5A/55fnu872BdMWvl59gnYwFWtGr6ta7E89rw06HPune3QOxfcasg1nPxdardogATRd5+vz/EPt+qk64GLvkG+iwc3QVi38/AikSvNZuv2ue+hBXBog/gLk25TfR53jMKk2+2Xo9JWEHL8Plp87HeKSpnqi6S5pmPO1xVl/IAI0V1dIJTdkvd58peS+B2P+c0htjywsSj/r7wz/C8rUvpDLHY+b+qduoUrOw09pHJEPu84xsQu3WD3mUoIgQTugJXYSJT4TJ9CQiYgwlQB+6Mg9iYi66G2KpBT6v2oIVToE+0n4pWtffq10gtPwlX28bhOfVmYyZf08/1fRXd4LNj2XJMtiNyhe+AiYiIHOAETERE5AAnYCIiIgdqdA3YBhgpq6Xn/HKfjY5KLa5dvbG3J95XPh56yqOh+r4KsZDCBed/CrEZN43W93MVHsMrMVh4oMjPsTacqx/Q2S98jn2CcNOougF5qn3XP3H9LHsM/r30RVM8rjyr12Tr/oLr0Hv74Lqtp7E+hs11m0GfxHmFEAvMweIpO0fFqHawz2kvz8YdrqqLsSIBJTrXICxDn8udRXXhdlsO4NqnSQ+B2KbL9Fg0xbi+3uPKdRBb84heF06fiM/v622ehViWF5/PsBfqqHa3x1ZAH39Kx+oxvP7mjtAnu2UoxOac+TTElhfrY2j8Cb4+cppASPb21mMxug6u9zb/AMuJGi8W39vbVx9rwNx6qm0P1njaC9ER8R0wERGRA5yAiYiIHOAETERE5AAnYCIiIgfMoZ0Ea0ZYfIJtPlkXhSiuo3+/x099hn+d9w7EPs3qBLHNM9qqtm+C16GYn52Bbpmq2vftxp2WdjzXGmJf/RcTUVK9+gFcdcn10MdzFxY7yH5NF33oeNVa6LMrvw7Eiv7XEGKfPT1NtRcWxkKflwacAbEtj0Srdv05YdCnLAzPX15D/Duu7np9HvZM1kUTUv/xghRt210jW9OE10+wLcfrcVfQUI+7gCI8lEFn/wix1fuwOId5XJ/f8mA8H7mNMSHp5ItXq/bugmjok/NUAsTeePoJiM3N1bs0zbusP/TZclEwxOIX6+MyF+HYzNgfCbFGb+KL643nn1TtZ/b1hT5rx2Ji3/ZJ8artb6esqG2Y2Lb/JHzO4n7S/dLG+oy7u56T4u3VP+6SkpJscnJydf8aOgEYY1Zaa5P8/YzvgImIiBzgBExEROQAJ2AiIiIHjjoBG2MSjDGLjTG/GGPWG2NuqIjfa4zZbYxZXfHf0Oo/XCIior+GypSFKRORW6y1q4wxESKy0hizoOJnT1prp/7ObZWgnHJptDhXxRKe3a7au25oAbe7O/4ciDX6HP92OHiuT5WmPVjBZ9KAryF2y9CLVPvx+TOhz6h2t0DstNUXQKzuvTrRxUZDF0ldiok10ePTVTttTBT0uXHJAojd1eQSiA1YO1G1Y67ByklFLbDyU+Qifew5iZirErUdd5NpsByzZjzFul/9d/QON2n7a+7Dl4AiKzGbSlSs+didqp1/u04EEhFZlN8DYuEZmLSYNUTHIrb72fFnaBrEUsfpSlsDPl0DfV5thklLpy26AWKtXtbPcU5zHPsRm/C40oboKmZtbsVErWFvLYPYu01xK/CBL92u2k0+yfbz+3Bch2XqdhluhiTeEByLTT/Jg5jx6iSseh/WVu30g/zQj44fR52ArbV7RWRvxb9zjTEbRAT3TSMiIqJK+0N/DhpjEkWkq4gsrwhda4xZY4yZYYzB78gcus0UY0yyMSa5tAzruRJVBzXuSjjuiOj4U+kJ2BhTW0TeF5EbrbU5IvK8iLQQkS5y6B3y4/5uZ62dbq1NstYmBQXWOvYjJqoENe6COe6I6PhTqQnYGBMkhybfN621H4iIWGvTrbVea225iLwkIrhgRkRERH4ddQ3YGGNE5BUR2WCtfeKweHzF+rCIyGgRwf3WfNhAI8Uxeju3YTE/q/ZPLx6E210Yigkss2aOgFiTmfrhjJ/2MfR5/Z94u4hMnQjWAIsWySlnrofYrfFfQuzOlLNVO2w/ZpRcPe0niM2+f4hq25xfoE/n4CyIRQzGc/NQ6w9U+78Fg6BPSRQ+9VHn7Vbt7VsbQJ/YnzGh69KXP4LYI89OUO2c7jpRq3RlzVVgswFGiurox3tpw29U+9XHsGrT4Fr7ILbqtm5+foFOXBp66xLosuT23nizfJ0IdnHUBujz5dntIfbvRt9CbMbd+vgjpR706XkzvkSXvnSyansK9kOfKXVWQeyNM06G2PmtdeWnZW+0gT7BuVhVq+wc/TsLsvE1E7sGx+tpL2Olsvf/pyu85fbXW5KWJWNFLSJXKpMF3UdEJonIWmPM6orYXSIywRjTRUSsiOwQkSuq4fiIiE4IxpgpIjJFRKRJEz8bHxP5qEwW9Lci4q926vyqPxwiohOTtXa6iEwXOVQL2vHh0AmAX4ojIiJyoEZ3QwqPS7Btz7lJxWrv1gUb/O1WlNMU36gXxeJxN1iu7ys7EXdsiV+C63p5LXVxgPDdBdAnYD9+6f+XO+IgFlFf96s1BwsP+HuMdVfo9d2iRrhWFpRTArGA7EKIbbgt2qcTnquYH7DgQqDPXdVdngl9Cpvht82Ko3DRPDxdH2tmZ10YYutbT0hhekrN7IZUL8G2Gqd3Qwrbp9cCPV48R0VR+PdpaQQecp3Neuenkkg8H9FrD0CsoIl+jgMLcX09aD+OxU2X4ZiyYfrx+CtUU1gXY/W/1s+xv+c3MB+LrwTk4VjcfLEueiGReLv6X+JrstRnh6245XiuihrVxlgMXhdC9+vfebClHudb5jwhBRnVP+64GxL9hrshERERHWc4ARMRETnACZiIiMgBTsBEREQO1GgSljEmU0R2ikisiGBViRMDj71qNLXWYhZbNeC4c+54OvYaGXdMwqLf/F4SVmUKcVSZ3wa+MSb5SAd0vOOxn3g47tw6kY+dqDrxI2giIiIHOAETERE54GoCnu7o91YFHvuJ60R+/Dx2or+YGk3CIiL6O2ASFv2GlbCIiIiOM5yAiYiIHKjxCdgYM9gYs8kYs9UYc2dN//4/whgzwxiTYYxZd1gsxhizwBizpeL/WL3+OGCMSTDGLDbG/GKMWW+MuaEifkIcf1U6kcacyIk77jjmiP6YGp2AjTEBIvI/ERkiIu1FZIIxpn1NHsMfNFNEBvvE7hSRRdbaViKyqKJ9PCoTkVuste1FpKeIXFNxrk+U468SJ+CYEzlxxx3HHNEfUNPvgHuIyFZr7XZrbYmIvC0iI2v4GCrNWrtURPb7hEeKyKyKf88SkVE1eUyVZa3da61dVfHvXBHZICKN5AQ5/ip0Qo05kRN33HHMEf0xNT0BNxKRlMPaqRWxE0l9a+3ein+niUh9lwdTGcaYRBHpKiLL5QQ8/mP0VxhzIifY8/Y3H3NElcIkrGNgD32H67j+HpcxpraIvC8iN1prcw7/2Ylw/ISO9+eNY46ocmp6At4tIgmHtRtXxE4k6caYeBGRiv9nOD6eIzLGBMmhC+Gb1toPKsInzPFXkb/CmBM5QZ43jjmiyqvpCXiFiLQyxjQzxgSLyHgR+biGj+FYfSwikyv+PVlE5jo8liMyxhgReUVENlhrnzjsRyfE8Vehv8KYEzkBnjeOOaI/pqZ3QyozxlwrIl+ISICIzLDWrq/JY/gjjDGzRaS/iMQaY1JF5B4ReURE3jHGXCqHtrgb5+4If1cfEZkkImuNMasrYnfJiXP8VeJEG3MiJ/S445gj+gNYipKIqIqxFCX9hqUoiYiIjjOcgImIiBzgBExEROQAJ2AiIiIHOAETERE5wAmYiIjIAU7AREREDnACJiIicoATMBERkQOcgImIiBzgBExEROQAJ2AiIiIHOAETERE5wAmYiIjIAU7AREREDnACJiIicoATMBERkQOcgImIiBzgBExEROQAJ2AioipgjJlijEk2xiRnZma6Phw6AXACJiKqAtba6dbaJGttUlxcnOvDoRMAJ2AiIiIHOAETERE5wAmYiIjIAU7AREREDnACJiIicoATMBERkQOcgImIiBzgBExEROQAJ2AiIiIHOAETERE5wAmYiIjIAU7AREREDnACJiIicoATMBERkQOcgImIiBzgBExEROQAJ2AiIiIHOAETERE5wAmYiIjIAU7AREREDhhrretjICL6SzHGZIrIThGJFZEsx4fzZ/HYq0ZTa22cvx9wAiYiqibGmGRrbZLr4/gzeOzVjx9BExEROcAJmIiIyAFOwERE1We66wM4Bjz2asY1YCIiIgf4DpiIiMgBTsBEREQOcAImIqoGxpjBxphNxpitxpg7XR/P7zHGzDDGZBhj1h0WizHGLDDGbKn4fx2Xx3gkxpgEY8xiY8wvxpj1xpgbKuLH/fFzAiYiqmLGmAAR+Z+IDBGR9iIywRjT3u1R/a6ZIjLYJ3aniCyy1rYSkUUV7eNRmYjcYq1tLyI9ReSainN93B8/J2AioqrXQ0S2Wmu3W2tLRORtERnp+JiOyFq7VET2+4RHisisin/PEpFRNXlMlWWt3WutXVXx71wR2SAijeQEOH5OwEREVa+RiKQc1k6tiJ1I6ltr91b8O01E6rs8mMowxiSKSFcRWS4nwPFzAiYiot9lD31f9bj+zqoxpraIvC8iN1prcw7/2fF6/JyAiYiq3m4RSTis3bgidiJJN8bEi4hU/D/D8fEckTEmSA5Nvm9aaz+oCB/3x88JmIio6q0QkVbGmGbGmGARGS8iHzs+pj/qYxGZXPHvySIy1+GxHJExxojIKyKywVr7xGE/Ou6Pn5WwiIiqgTFmqIg8JSIBIjLDWvug2yM6MmPMbBHpL4e28UsXkXtE5CMReUdEmsihrRXHWWt9E7WcM8b0FZFvRGStiJRXhO+SQ+vAx/XxcwImIiJygB9BExEROcAJmIiIyAFOwERERA5wAiYiInKAEzAREZEDnICJiIgc4ARMRETkwP8DDiuqm6BZzukAAAAASUVORK5CYII=\n"
 | |
|      },
 | |
|      "metadata": {
 | |
|       "needs_background": "light"
 | |
|      },
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": "<Figure size 576x720 with 6 Axes>",
 | |
|       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAKGCAYAAACSkUhPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABpiklEQVR4nO3deZxcVZ3//8+p6up9T3c6K0kgIRC2AGERZJNVQRFFhHFBZUDcxn3E5fvV39dZGLcZdRydqAiMC4KooCKCuACySFhDICEhZOmk1/S+d1Wd3x9pnJz7vqEb0t03gdfz8eBB7ulzq07dOlWf7jqf+hznvTcAADC9UkkPAACAVyICMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAN4SZxz3jm3OOlxAPsqAjDwCuSce5dz7t6kxwG8khGAgZcZ51xB0mMAMD4CMDDJnHNHOecedc71Ouducs791Dn3T2M/O88595hzrss5d59z7vBdztvknPuEc+4J51z32HnFu/x8vHM/5Zx7wsz6nXMFzrmrnHPPjo3jKefcBWN9Dzaz75jZq5xzfc65rrH2IufcV5xzW5xzLc657zjnSna5j08655qcc9udc++Z6usIvNwRgIFJ5JwrNLNfmNm1ZlZrZj8xs+cD35Fmdo2ZvdfMZpjZf5vZrc65ol1u4iIzO8fMFpnZ4Wb2rhdx7iVmdq6ZVXvvs2b2rJmdZGZVZvb/mdkPnXOzvfdPm9mVZna/977ce189dv7VZnagmS03s8VmNtfM/u/Y/Z9jZp8wszPNbImZnbEn1wkAARiYbMebWYGZfcN7P+q9/7mZ/XXsZ1eY2X977x/03ue899eZ2fDYOc/7hvd+u/e+w8x+ZTuD4Ys5d6v3ftDMzHt/09ht5b33PzWz9WZ2bNygnXNu7D4+6r3v8N73mtm/mNnFY10uMrMfeO+f9N73m9kXXuoFArATa0XA5JpjZtt8uMvJ1rH/LzCzS51zH9rlZ4Vj5zyveZd/D+zys4mcu3WXf5tz7p1m9jEzWzjWVG5mdbsZd72ZlZrZwztj8c6bMLP0Lo/r4V36b97N7QCYIAIwMLmazGyuc87tEoTn286Pg7ea2T977//5JdzuRM79W9B3zi0ws++a2em286PmnHPuMdsZVIO+Y9rNbNDMDvHeb4u57aaxx/G8/V7c8AFE8RE0MLnuN7OcmX1wLBHqfPvfj32/a2ZXOueOczuVOefOdc5VTOB2X+y5ZbYzyLaZmTnn3m1mh+7y8xYzmze2Zm3e+/zYffy7c27m2DlznXNnj/W/0cze5Zxb5pwrNbPPT+xyANgdAjAwibz3I2b2JjO7zMy6zOztZvZrMxv23q8ys8vN7D/NrNPMNthYktUEbvdFneu9f8rMvmo7fyFoMbPDzOwvu3T5g5mtMbNm51z7WNunxm73Aedcj5n93syWjt3eb83sP8bO2zD2fwB7wIVLVQAmm3PuQTP7jvf+B0mPBcDeg7+AgUnmnDvFOTdr7CPoS23n14luT3pcAPYuJGEBk2+p7VwzLTOzjWZ2ofe+KdkhAdjb8BE0AAAJ4CNoAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAXsUgJ1z5zjn1jnnNjjnrpqsQQEA8HLnvPcv7UTn0mb2jJmdaWaNZvaQmV3ivX9qd+eky8p8pqY2aEsNh33yhXpeKqtt3o3fz6dj+ozo4x0tC28s06/njZZrW3pE26IK+vPSlivS33vSI2G/4VrtU9ilYx+p0ftMDUcuTsxTXDCkjfmCmIsakS2Jua3BmH6lkTGNhsej3R2WHegf/w4nQdy8i445FzPvnD51sVKReRA379Ix8264LmzLdOtz7mt18mdHY+4gomhHzPNbqLfvRsN+I3V6XqZLz8vW6MXx2cjTmdent6hbbz9bFPZzMfM1W6xtca+/XEl4cmokvO3pmndxcy49FPaJm3Nx73VxXC489jF/SsXNuZHK8KEX9k7wPWVo/EuW6dfbyhXqeanonKuVLlbQq+flqmJekEORBx4zdwp79bxscXheKiddYt/zJ/ReF5mXLzTnCuIaJ+hYM9vgvd9oZuacu8HMzjez3QbgTE2tzf/AR4O2io1hn779dJwlbXpb+Yy2FUfedIar9LYqt+gMb3pV+IY260F9wppfpTO8rHH8Sdnw1z5p69m/VNrKt4SvzmcvLpI+C2/VWfLcm3UMpZvCi1MwJF2sZt2otA3MDKdDXABqX64zvHa1jqHj8LBfSXN4/Z679mt641Mkbt7NWB2Or3e/mF+KYq5bnIrG8HkZKdPbqmgclrbn3hOOoeE3+pxn37FD2tqaqnQQufA5WPw/+vz2z9MoVtIa9tv89zrHGn6h42p7s74TjXaEt5/u118UFt6m16FrcXj7cde94xBtq3wupt/ycPxlm8I5PV3zLm7OVa0P+/TNj/kFpWNit1/UHb44s8V6WxVbdQ5sOTu8HvP+qC/yLW/SOVC2VudA9Belhr/qE9e9SM8raw7fgzdfpGOY+Qf97aTrvJi/jJ4pCw7TMb8ozL1b52rn0nCuxv0i0vIqvbvaJ/T2dxwdjr+kMZz3m67Z/Zzbk4+g55rZ1l2OG8faAs65K5xzq5xzq3L9MRcQmALMO0w35hxerClPwvLer/Ter/Der0iXlY1/AjAJmHeYbsw5vFh78hH0NjObv8vxvLG23XI5s0zks/2Ok8KPpAq260cPQ7X6Z39GP9m1zoMjfXq0T/TjZjOzqg3h8eJP6afoTRsPkLbsDv0oObouteVsXUgYiVk/az88XFytekof83lfu1PaftV0mLS1bgo/iBiNeS/Yco7+7lW6PbzPgWX6kVLpU/ox5uDru7Xf/TEfk+7qpaUevCQuZ1bQFz62vou7wuMdepHK1+lcLIibdweGc2qwQZ/f1tP0es+8M1wquPFLX5Y+9w3Jh0r2NXemtBWmw48NN15ZLX0KMgPSZuvDxz3jdu2y8sv6Edqd/QdL2zXrw8/s0jGLuRtLdV4UtofPzfAc/ei0ZIuuOWVf26m3tbo6OJY11Wmad3Fzbsfp4UehrlU/nk2N6DyJW3eMLpmMVOoD65uv87cy8l73vq/8VPp8db3Or/4NOtbRivA+N52rfXJ1ulC/YyAMOxWr9bn9ty98R9p+1bVc2n7efXRw7GKu36bz9D3LF4Rjz8eMM9MY87H7m9ulreih+uBYnq8XyCXZk7+AHzKzJc65Rc65QjO72Mxu3YPbAwDgFeMl/wXsvc865z5oZr8zs7SZXeO9XzNpIwMA4GVsTz6CNu/9bWZ22ySNBQCAV4w9CsAvlk/p90hdR/j5f1waeZEu9ezmDsLDhof0Kw9tR+nn+kXd4frZwzfqumpJzIf1Jafp96O6H60Ljkca9GtPB/w45utEl4WDr/uN3t8Prj9H2oZrde3nrDc9HBz/9i9HSp+Cfn1Ac+4OMzc3V+gad9VGXdDYvlDXT9PLw4WQ1OZwHcZP58zzujY//GR1cFwa8zW9uLXzuK/IDM0In4MlP9YM2KF/7pW2wg3heuhJt31M+rhinSs3nfJtafufjhOC465BXfeq+y99QM9dHK63zrheX2zn3f5hactU6WvrG8fcEBx/es0F0sendb7OvzNcm37ufP2yeUmLntfZpfPTlYf9cqWRtb6Yry9OBZ8yy0fealxL2JDp0ddg9PvyZvG1C/KR79cuulXX97ecE/P6fS58P/ridZdIn4xOVTvpHY9K2x2PRN4nY9bXD7hOG5+9NBzDrPv1RfXugy+TNhf9zq+Z/dvZkTn34Jukjx/S9/xFt4bz99m36Hp5xSZpsrb6amlLVYbviSOV4c/jalv87dzd/wgAAEwVAjAAAAkgAAMAkAACMAAACXjJmzG8FCWz5/uFl4WJJrnI+nhcAkBcgfKCgfELjccl+qRjvtQ+ODu8rbgaz0On6MDc4xXS1vBQmO2z/dUxWR8xJaQLBiLFCGpjit3HPJ75y5qlre1Pc4Ljmmc0kafrAC1IEv1ifWG3DjQfM4bCmOespC0cf+fS8He9zSu/ZkPbt07LZgzFc3TeRefUwBy93uWb9ffTuILznYeE56ZjkkXyBXpe4fwwWevMRWulz5tqHpa2b2w7Xdqe+uOS4Dgu2Sm1NKaKyOpwDg/N0yygompNkrnq8N/puJ45LTjO/XGG9InbVGFgQfhklG/USRa7CUhMtcfoZg/9c8Iptvm/p2feFc+Z7xdeHnmvKw7HVhCT+JfW3DYrjNnAon9uZAOLuPfIuAIeB4Yd3bDO1WVHbJa2NevmSVv9/eHz1K21imykXt973Mj4lz9dpxfiLQc/Im033BsWf2m4P6Yu/TJtG4kUeyls0vfp9KCeF1cfv2x7pK78gonPOf4CBgAgAQRgAAASQAAGACABBGAAABIwrZWw8gVmwzXhgnVRR7g2PWONJoG0HakL5KMVMYlSkQX/skZNNBqaGZOcEqmSlB7SPmW3665GcYkurUeFZU9G6jU7IhWTpOMPCCvZFGY0eWF0gyZ9NT04W9oqm8JxjZbq/Q0drhka+fYwIy6alGVmVvukXvdcobaVtoQXtX9WmH3j9OFNGZ8yG43sFlPaHI554a903jWeoSVseqt14NWzw223upoqpc9JR2iCVddIWKmocaBa+qwt1ed37e+WSNvIzDA7ZL+DNTkv72OSfk4Kx97ao/O8sEAf80+2Hau39cva4Lggp/On9OJWaRvtCu+zb6F0sfLn9K0qFTOHStvCxtGy8Lzpmnc+bTZSHT4nxa3h67DuCZ1zzcfre91wtd7+aG34QArb9b1uoDrmva4svM/KJzW77Sm3n7TVrtH3kIGGcD5lF+l7SlGhvv+9ZtH64PgPz+l8zmX18WwZrJW2mQ+GY4juEmVmll2o4ypIhddmRF9mVvKsvv4LY3bYK20LH+NIRfgcxs3Tv/1s9z8CAABThQAMAEACCMAAACSAAAwAQAL2KAnLObfJzHrNLGdmWe/9ihfsn9ft3EaqIovhVbr4XtIWU60rpmmoPnJ/MYvfJc2aiBKtMJUZ0HIno2V6Xvepurh//tInguMZGS3X8+MNepnesGh1cHzDPa+SPr4+pkrRNk3a6DwzHNd7Dr1f+qwfmCltd7ccEhynsvqYdxwTk1Q2EFdVK0y6Ko0khr1QYsJkc3mzTF/4WEbCnQBtqE6vY2GnPv5subYVpMP5UtSq16OyQCv7PLB5YXBcX62Vqn7RpFtJ3nz5V6StOhWOIWZXO/tBpyZOHVyyLTj+XYduxfmXLYuk7bmYhJgPf+LXwfGSQk0E2zii8+672ROD45jCatYXU0ks7j0gWxw+j9UbwomWjrswU8B53VrVR/7cGamMea9r0dvyBTGVnBrC59vl9bbiqmqlNoRJVwUxld0qntPb8ufukLYfHna93kHEyvZTpG1xSZiI9+e0ltAaGdLX45q2WdJ2xsceDI7PrXpc+jw4oLf/0+eOCo47hzTBNXOMbs3Z3agJlj2Lw+s149Hwmr5Q4t9kZEGf5r1vn4TbAQDgFYOPoAEASMCeBmBvZnc45x52zl0R18E5d4VzbpVzblWuP6Z6OjAFgnk3wLzD1OO9Di/Wnn4E/Wrv/Tbn3Ewzu9M5t9Z7f/euHbz3K81spZlZ0fz5PhfZDSW6Y0fcF6njPkMf0Y/irXZ1eO6QbsYSu6tKUVd43L1Ix3D1u66VtoMK26StI/IAv7LtbOnzwYP+JG31BeHK1011R0mfI+Y3Stu/nfFLaSuKLBldufEt0mf9PQulrfywruC477kq6VPYplMmp99XlyIeg/lwUPmYTaIm067zrnjefJ8tDcdT0hqOp+lUXffPVMV8gd/pmll7Y3VwnNpfdw86slx3mLmtbXlwXDijW/rcvPRn0laeKpW2pmy4frw9ZqJfUfNXaSt24Vx/uEjXe9+6VHeh+UjtQ9JWmgqf1HWj+sJ9/1/fJm2Hzm0Kjp8e0C2TSmcMSNvQVl23G5wb3mc+E67PZe+RUyaNvNcVvXDRobajdG03E1PoIa4gTtWT4bWOez9MxRReib7XDczWPj+7QnMM5hfoe2JLLswH+VmP5it8fObvpW3Ih8/JAw06506q2SBtF1askba6dDjP7xgskz7XrTtO2tKRvI3iCl0w72nRojSp0fF3SOqbH/aJe3/82+3t/kfj895vG/t/q5n9wsw0ywMAAIiXHICdc2XOuYrn/21mZ5nZk5M1MAAAXs725CPoBjP7hXPu+dv5sff+9kkZFQAAL3MvOQB77zea2RGTOBYAAF4xpnU3pNSoJr9kI/kko+WacOBiCkLEJWZFv3gel9CQL9I2iyyi33T5V6XLgpgvw3flday5VDiId866T/r8plN/b/nAzD8Gx188+hbpc3GFfjE85zUh59lsmDw0t7RL+rQfrQlktSVhossz2WrpEy0usLNNmqxic3ht8pFCCimt5zFlXM6sKFJUo/Z1YQGKM2q3ynm/fFqfJ5fS53z/xWHBif4Rzbr4bfuh0nb44ZvC+1vyO+ljpglJcaLJKFUxlU5+PTBX2s4sCROgDi/V6/C2Ci3CYKbzLufDF9Ks9Ij0+b9H/VraevPh2B/fMF/6jPbpW5XORLPi5jDBp3hHMvMuNWpW0hKu8PUeGFYBKejSx1TcEfP+F5NMNRrJD8poDRcp/GFmVtgd3v59//h16VPkdM5lTedTQ6RexzurHpU+X2w5Q9q+MOuu4PitMzWh783lMW/epklR0Tm3sEDfI686VD+YXTM4Lzi+c+tS6TMyoAldxftpmZjs02EGnCSYxk3UMXwPGACABBCAAQBIAAEYAIAEEIABAEjAtCZh5TNmQ/VhEkBxJCmrRHODrG8/bYtL/BmqDW+rcvPEttzZdnp4fG3HCdLnzdWrpK0hrRkdZZFdadLRMilm9r76P0nbjV3HBMeLivRCbMlqpkWp0xX+hnT4e9VVDXdKn9c8/lFpc/PC5ybTr7c9tFgvfKpVM9s6l4XH0dSSbFwy3BTJZ8wG5oTPQ+Mjc4Ljll5NUKo6VpOPFlZ3SFtTf5iEcdiMJulzX+NCabtsabhL1ajX+ZpxujNNnFQk02PY69w8qXibtD0eKaFUndYSit15rQhW7vQJzEee5XKn5c4e6V8obZlIRmVNvSa6DFRoYttwj44h2xAmOnW1hQlF0Up8UyWfMRucGV6PyqfC65Hp04SrgVkxCVcxlbDKtkd2WopJ9Cnfru89zSeEt/XEiM6v+rRWHatIxVTVilRRa8np8/2ZBq2EtT0b9itLaRWquNdCdI7HOTCj8+QbrUukbVZRmOSVjkmu9DM0iXB4WB/jnGPCJMzGDeGOX9Hd9nbFX8AAACSAAAwAQAIIwAAAJGB6C3FkdUeQXGQZZ6hOP+ev2KSfz8ftahT94nnHwTHrZ3pTNv/2cL3s8tffK32qY35VGYm5rTI3/u803247Vdqi68IX/PZD0ueSN/yntBU5fQqjX5qvjlnf+NSJt0nbym++ITgujlt+zOsiWpF+992KumIuzi6aY9bwp0pqxKxsS6QowrJwfSdbpc/b0KZqaXu0QosBFJeHt/VYTteTP3+YFqD41J8uCo4/dO566TOZ1md17PWRNd+V206RPucsvEva0nHzPFIUIW5uvqNWC9NcePsHw4aMrl26YZ2MhR0xO6flwzXAqtbw563TNO92FuII38uG6iLFaaLblplZxRZ93fTN037RYg8FA3pe12K9PvvdHq6R156vFyRuvTcTs/6asfA5mVMwKn2+3aH783x8Rri71l8GZ0qfc2IKwsSJFuKIWyf+yEydv5euuTQ4nlGquQ8lGX0829urpW3rtnDbvdLG8LqkdCn5f3+2+x8BAICpQgAGACABBGAAABJAAAYAIAHjJmE5564xs/PMrNV7f+hYW62Z/dTMFprZJjO7yHsfk4qjoolS0S8pxy1Y71iuCQbFbfq7Q0FkHX2oTpM5Ft2qd1C0oSU4vuC/Pyl96k/dLm23LbtR2jry4e1/7Cfvlj6lh+ul+vOmvw+OD3z/X6XPe444R9o+MluLbBxdFF6bx0c0+earv36DtPn9w+OSVukiuxyZ6Y5WZpo4Et2FJj+N6X8ub1YwGI67+rEwWad3kc6VWYfoBegZiilAcX9NcJw7UefY5x/X633wZzYGxx89UgvAfDwmgWRRRp/PaOGNsx5/l/RZUKVFREYiT0Turfr8XnXb0dL2yXpNVJyZDneP6ctrgs+Fv/0HaYvu9uN6dXLUax0c65+rCTcjkaIV/eGmN5bXOg1Twqf0deEilzbTo9e67VidhxXPagJadJen3oV6Leof1WIspc+0B8dv/pa+1y06d6O03bT4V9LWkQsLaLzhifdIn84efXPoXBq2PX20jnP5xs3Stiyj86kmHd5WU0yxor9f+05pa28LC9B0xLym5l+v1z13vsadwhnhuIbqw/n7Qu91E/kL+Fozi77zX2Vmd3nvl5jZXWPHAABggsYNwN77u80s+qvz+WZ23di/rzOzN07usAAAeHl7qWvADd775wveNptZw+46OueucM6tcs6tyg7od62AqRDMu0HmHabernMux3sdJmCPk7C8995iy1v87ecrvfcrvPcrCkrLdtcNmFTBvCth3mHq7Trn0rzXYQJeaipMi3Nutve+yTk328xi0nWUd2Y+sq7tIuvv3ctiEge26DArtmiywmBd+PtE3aOamLD9xJjtUE5aEBx+4R0/ki7LizQJ69ZohoeZffa3bw2O64/WXY36hzUT5J0HhUlXzasqpc97634jbYsKNFHg1v664Phrn71E+tTEvD9IxZ2YX6v65+g1LYipLlS5KXx+dhwW2b1lGpOwfNpspDK8/5Gq8MEtW7FJztu4Y4a05R6vkraRw8LdgvrbKqTPp0/QymNlfwmTWC4sb5Y+BaZJLAN5TfL6p7YVwfHSWn1JbuvXsV84N6xK1P47HftVdY9LW5HTCRQd17EP/L30yXTrfM0XRiZaXudY+5E6GXOVWqkoWgipoCOcaC9cn21qucjj6jpedwFynbrbTkm7vtf17he+1xXpxl3WuVRfZL3zZgXHH3jXLdLnlFKtyLZhVJ+Tt6y6Mjh++4EPSZ+bNx8hbZfPuCc4XvPMLOlzfMxuaWmnr4Voot8Jd35E+riYymoWSfQraNAdoLa8XU87coEmhz25LdxZLV8e2ckpvftZ91L/Ar7VzJ6v5XWpmemzCAAAdmvcAOyc+4mZ3W9mS51zjc65y8zsajM70zm33szOGDsGAAATNO4Hgd57/fxyp9N30w4AAMZBJSwAABIwrdsR+gKz4Rnhgnh0m7hZd+vvBH2a62R987RfKpLTEN3qcHcGF4TJI1ev1YpT1x5+nbR978oLpG2/zzQFx12/0K3p5l6oC/mdkbI5r658Jn6wE3DNmeGWcmVzNUuqY5kmNIzUhM9NQZ9e45G6nLQVtWlizWh5eO7s+8Pkupa+6UuHyReYDc8I76+4NUwq2fyLSBkwMxs4QB+rq4pJ6GgNJ1r1AV16WzElmGYVhP0eHdbrfUzMHH7z4pOlbdOnjgrHqbmM9uV3XyNtG4fDbxDWZXqlT3dM0tfMtCYLXXhqmICYeb0mEuardVy1R4SJiiNZnU/dMRWVbCDm7SsbPq9z/xxeiNZpmnc+421oVnjfxc3heGvv1TkxXKvJTt0HxNx+JLEnW67nDdbHJK6VhXP6pu1a5ezsJeuk7bLLPyJt6feFiUv/8zP9UPTiN/9J2oYimbj7FWiFtp68JqhFq16ZmV34xjDRb+bBOi973qDVsV69NHyMTYM6V7d0VUtbPlrK0czm10cqG36vPjjs0If3N/wFDABAAgjAAAAkgAAMAEACpnUN2OXMCrteOOZni3UtI+Zjd8vF1NPIR3ZCMae3NVoZswY0Et5Bd7euNfxT47nSdu1135C2wsh97vhHHcMnN71Z2j4V2V3myREtiLApWyNt27K6TvmeO/8cHN/RdYj0Wf+EttloeB1SMV++j66xmZkVdmm36Pr7aGl42z4Vc9tTxOU1PyBaECbTrfPC1ejaZ6ZQF1eH20uC4+5OLVLxpoonpe0PA+G6c3VaiwE8PKLFJq5brzsklbo/BccDXufFv7WeJG1fbHggOP7rsL6w/jCgSRhLCluk7fo//jA4jlkttx90LZe27zwY5iykinTsxaX6XAy16wJ5UXtkDmcj501T6oHLOitqDydZKvpUxowlp0uYsTvEFfZECsvoEqalYwrkpCLr650DJdLnd/1Lpe3q//62tO1fEA5s9Gh9QD/r1feZQwvDsXfkBqVPb8y12T6i/X51S5ibMxoz71eN6Fr77d2HB8eHlG+TPn9yeh2e2q5FQ/Lbwms4OxJjfHr373X8BQwAQAIIwAAAJIAADABAAgjAAAAkYFqTsMyZ5SI7n6QiSVcDs3TBOluuK/IjdZoMU/ZcmMEwVKfnpWIKFJRuDS9D6Yld0ufDc+6UttkxXwzfkg0TaeLW37+z/03SVpUKF/Kbs7pzzRMD8/XGYlxee19w/InH3yp9Sjdqtke0VkSB5jxYJuYBZTWPw8obI4UCIs9zXGLdlPExCWWRw/7Z+rjyfXqNyubqPq8Fs8J0o7lV3dJn7Ygm0P26LUwEOaZaC7RcWPmotM1I6bx7Nhs+WQ8MLpA+7627R9qidSn+o/H10mdFjY7rhJKt0laRCpOiftC9UPrcuOlIPa8uvKa9zZqAONKkyWG+WNO8CnvC4+5F4XOYe2Sakv+cWT46faKbPmluUGzbaIU+znwmfAHF7UhW3KGPNdMTDmLkYH0hzsl0StuRhdpvIPIi3jCqg39d+RodmIXz5M6BhdJjv4xWr1hWqEViUpEX8oasXqv/3K4FQgpTYbJWLuZv0fXtddKWHdEiMSU7wnP7Zoc/l3mwC/4CBgAgAQRgAAASQAAGACABBGAAABIwbhKWc+4aMzvPzFq994eOtX3BzC43s+e3MfmM9/62cW8rZ5bpDRfNh+siO/DM1ySX0VZNOino1KEP14QJBi6mmspopVZKSQ+Ft/XAkTdoH6e/q8RVXalOhf2GvCYFDMSMqy+y+8f+ha3S5+IKTY6I80wk4ah+Tpf0aR+qlbZo5afi+zW7qmAwJiGuQpM9CobCxz1altzvei5vlolsiDKwIkyWq6vWHVNGn9IkjI5WLTlUUhVmwGzv0T7bY6qYLa9qDI4/NWO99DErl5Zhr9Wx5kV2Jzq6WJOkvtB4nrT945zbg+Or5uvL+PhiTTyJG1dnLrymb63Qx9M4X+dd1I/aj5O21KiOIZ/ReZceiiR5RpIu494TpoLLmhVFkqCi1de6lul7Q6ZbXycFAzHV5yL5SKNafM18TL7Z0MLw+Mljfih9oolNZvFVzYpd+L65ICZrc3VM8mFDOhz8QUVN0ufYorjMpZgHGTE/rSP91NzfStua4TnB8e07DpM+hQX6/j5coBNoNFKBsWBo4gmnE3lXvNbMdH8+s3/33i8f+2/c4AsAAP7XuAHYe3+3mb3AjoYAAODF2pPPBT/onHvCOXeNc04/ZxjjnLvCObfKObcqO6AfLwNTYdd5l2PeYRoEc26QOYfxvdRCHN82sy/azq+Wf9HMvmpm74nr6L1faWYrzcyK58732dLw8/L0YPh5ecmf9Uv42UX6uX62VitqFLaGDycf8+gqntXGoRXhi+WxEb3tg2OWJDJO16UqU2HBgO2jw9KnKqVrC5sju5S05fQ69OW7dBAx6iM7DX3poJulz/v+eqW0DRWED3KwQdc7orscme1m15XImt1IpK7IC305fTLsOu+K5s/3g7Mi6zQbwvXtvn7NM8gt0W1oCsu1raQobKst1bWwf3n0tdL2tmUPBcdNWV2Hrk3HXPAY6cguXP1e53l0vdfMbO1IuLvL1lFdoz288Olx78/MrCiyJtiR12u1aWCGtDUUhdUzMmW6xj1aqa+1uPXSjqPC11amKzwvbv5OFp1z4ftWdKem6jU6/n7deMpGZoyft1LSqq/VfEHMbnBHhe91N/bNlD7nlTVKW8b0+kfnQG/MovPMtM7prZFiGemYvwPj8mvi1qajuTmlKX1j2RqTf1EW2WKqZ1QLvcws17HnYh7j0P7hWPuKw/eSSS/E4b1v8d7nvPd5M/uumR37Um4HAIBXqpcUgJ1zuxbbusDMdLNTAACwWxP5GtJPzOxUM6tzzjWa2efN7FTn3HLb+RH0JjN779QNEQCAl59xA7D3/pKY5u9PwVgAAHjFmNbdkFzOrKgrsvvR7HBBfqheF7nLt+gn5X262YuVtITn9r1qQPr4pZoYMvNHYcLT/q/WJKy005X0uCSsXKTwRqnTZIIHh+ZI23HF24PjX/QcIH3OKHlM2opixtWaCxMtjizSjMz3X/QbafvBN18XHI9UxXyTP6aQQdk2bazYGl7DkarwWqX1aZgyqVGzkubwsUQTzEbLNdGv9Fnd3WW0Sq93Z0WY0NXTq4lGJ5+6Wtp+etOpwfHHr3xE+qQmmKASnYszUpoI9sCQvmiOKgoLdnzu4fOlz8dO0YIasYVpLBxXQ1oLuVxQp4/x899/e3g7C/T1V9wWk4SlOTJmkWSh6HtCSvO7pkQqq0lXuUiez0i1vr5KWvS2XE7fpqM7xHUs0geW7tLzqu4Ki1mcfcIW6VPqNCFpIqLJn2Zm62LGvjgTjv1Djbpb0Q/20527JiLu/fCEYr2o73gm3CHulHqd439uWyJtvS1agMaVROb9qvDnrRqG/oZSlAAAJIAADABAAgjAAAAkgAAMAEACpjUJy8wkiSeaYDWk+SvWe4wmlOT7dLE9Wxrelm/WZIKCZ7XiUdUDm4PjE7/zCelz0+VflbaDMpoY0pMPy0JdtFoLhJ2/3xPSdkfXIcFx4xt0R51v36XJVGeXPSVt+2fC5KHrejT55r9uOlfaXH14nM/EJFdtkibLaa6SdS4Nn59oVbLcFFfCCjizaGGodGTHkoJ+TSAZPkyzJ/LtWkqpenU47/rn6hA2f/pAaVuwKkzMOrLyo9Lnk6+/Rdouq9RKRTvy4Wvk7J/pHG44RHfY6v9NWAlr8bf/Kn2W3/R2afvRkddI28GZ8EltzOrr9jM3fVDaiiPF4jLd+rqqXq9JcsMxSUxDkVNHIi+jfNzGTlPB605MqWjSWEyO48AJ+hp3G/Q9K1LIyWpW6QsqJv/TGm4M3y9O2F/nyafO/4W0vatyu7RlI0l379uiu2091dYgbe9Zcn9w3HKWXohvPTBf2t5e+Yy0VaXCRL/2nF6/4+74sLS5TDifhmOSxUa/q2NPnahj9aPh6791Rfjz7J/llP+9vd3/CAAATBUCMAAACSAAAwCQAAIwAAAJmN4kLKfVYIYiFV2qDt8hp/U8pplZRZ0xW22FRV6sdHvM7xdndUjT0weFe4Dd+YYvSZ/Zac006sxrksm/tp4UHL9u/hrp8+xAvbR9cc5vg+P2+zWpYl6BVgiqSOm4fj8YVvb6+vVvlD6lHZpgNRipQhbdKtLMzOX1vOGamIo+ke3RhuoifWISUKZSNPkmHUn8KX5Vu5zT/YxuzVfRqHOqc3n4vNQ/oJk+nR/Tsk2dnWGlnV+e/O/SZ3FBzP3lterR8bd8LDied6hW/2ls0sfz0SvDimhPvF33w7t+znelrSimElY06ep1P/hH6VMQUwFtYE44VzI9Ojlaj4vZbq9Sr0PZuvD1MFwbnuen6U8OnzLLRnKnXCSPbORgTfLLrC2TtmJ9S7SuZeGcq3guJiFUi+lZx7+FyYC/Pvtr0mdRgd7Ws1m91uf+5QPB8aWHPiB9WgZ0W9WjSjYFxyc8rlWoji2Ky9LUymrDPhzXyQ/qtgTz5+kF3Lq5LjjuHdb30eLL2qTt1GpNZPzDUwcFx25k4mGVv4ABAEgAARgAgAQQgAEASMBE9gOeb2bXm1mD7SyjsdJ7/3XnXK2Z/dTMFtrOPYEv8t53vtBt5TNmg7PCL28X7QjXG7K3h5/Nm5nlFuj6z6guLdjQrMgaaUa/vJ8Z0EIKFllL+mrrGdLl63P+Im0Xvef90tb7Dz3B8Y5ndd3tC2f/TNo2ZsNdNsqcLpb1xqy/VsT8CvWtFccFxwtrtkmfjuNnS1vnoZGdnLbpWlD/nJjiB/V6nVORL6dXPxs+79E12Km0c96FY4wWgBm5W+edrjiZZWMaq58MX0adB+vzlG3TwipHLg4LwPy+b5n0WVy9VtouPfnvpM1/Nry+/r9nSp+ad+vLs2mkKjg+sKxZ+qzsPFrarqx5WNsWvDo4rnuTVoLoWKpzyqfD6xVdOzUzSw3H5CN06NvXwPzwPhf+MnxPaO2J2c5rCviM2fDMcCzVT4ZzruhefaD5mKI2A7Njxhy5Zt1a58WyMTt8ueJwTJ987s3S5/rFN0nbez7+MWl702cfDI5/+MvT9Lbe8Q1pq45UEUnHbLHWndd8l2jRDTOzN50Yjr/gTfo627pEr/NrV4TFkB5s3k/6tHVqkKkp1ryfytqw+EfVLeF5bX27n3MT+Qs4a2Yf994vM7PjzewDzrllZnaVmd3lvV9iZneNHQMAgAkYNwB775u894+M/bvXzJ42s7lmdr6ZXTfW7Toze+MUjREAgJedF7UG7JxbaGZHmtmDZtbgvW8a+1Gz7fyIOu6cK5xzq5xzq3J9sTtoA5MunHdaHxaYbLzX4cWacAB2zpWb2c1m9hHvfbDQ6b33Jtss/O1nK733K7z3K9Ll5XFdgEkXzjv9biUw2Xivw4s1oW8MO+cytjP4/sh7//Ox5hbn3GzvfZNzbraZ6TeUo7eT1aSr4dpI4k+TJlvkC2OSWmJ2+ijfGD6c4Wo974LXrpK22zaFyS8fmXmX9PlF/xxp++bKb0pbVz5M8npk0SLp873NJ0nbz5f9MDh+PLqNi5l15TUJ4QMbz5a2jSvDwiWFD2gyQXSnFjOzqki+z2BDTPGDmO/HR5NozMxSkedntCSyU9U05t+7vFmmL5xXA7PCMVds0nnXu0iTWAr6deA+cmpht97W2a9ZLW2/WX1YcHzW8bqz1Tc7D5G299/5O2n7U8/BwfHgEZrN82SnJt5dXBPufnT1ttdKn3c13CttKzuPkralkR15VndqQpe/W7eKKm6N7Ca1MGZyxknpvCtsDd8DevcLr0P+0empAOOyZoXt4Xtdz/7heKvX6vj7NBfICmIK4hS2h48zbuejOUu0kERTe5h098WFv5Q+9w1poaDb/+Pr0taSC5+nKy/VefL4yCxpO6I0TAbcnNWE01Gvr70bemuk7dt3/zg4vqVXXy+/bj5M2u5YHxbPOHC2hq/CAr2o+eiL3cwGn6oOjksqosVfdj/nxn0bdM45M/u+mT3tvd+1bMqtZnbp2L8vNTPdNw0AAMSayF/AJ5rZO8xstXPusbG2z5jZ1WZ2o3PuMjPbbGYXTckIAQB4GRo3AHvv77XdV+49fXKHAwDAKwOVsAAASMD07oaUMsuVhAvU0YpEcZVg0lp8xLINunA/GNmxqKRV/3DvGNGM2Oyj1cHx69d8QvpULtcdNT679DZpWzcUJro83qO7y1THVFPZmA3HfsX975Q+RWs1CSs9JE3mI8lns+/tlT47DtMszcGZ4fXKlmqSiI+ZMYWdWt0oE6n+MlIR3vZ0JmF5M8tHxh1NynI5fazF7TpIF5Mf1H1I2Fi2SS9SNOHKzMz1hdftmn97g/RpO1Xn+UXLtQrVE51hclM+5kOrorQO/tc9R4S306LJhv/3vy6TtvblevtVB4Wvkd41uotZRate56EZkediJCbRrUiTctI9ep0rNktTMpwmj5a0hY8zUoTMzMwKu7VttCImCbUyvB61j+s1Gz5Kr09qe7gd3cU3fVj6vPucP0jbYYWapPSngcXBcSbmxZF2OvbefDinr+88Xvr8+M8nStuhyzdJW2p2eB3+8xevkz7R176ZWXQzr60l1dKnr0MraHVt0W/bVm6L7OY1EB5Hd8HaFX8BAwCQAAIwAAAJIAADAJCAaV0Ddjmzwq5wHaRvYfhl5+IWXU+ce4+uLXQu0V2Nhmsj644xhThK0rqmVnFc+IX1Lx10s/R5cOAAafv3j+muNKf+U7hr0po2/SJ672Zd/BmYFz6eNy17TPqUH6ZbCF378AnStuz/bA+Ou4+fL328XmZLhZtCWa5Cv4heslUrcYzU6CJHWXPY1nFQONWmcw04lTMr6oiub4d9fDpmTfNZffy98/XC1TwWtsWt7ZXXDEhbn4WDOP5Dj0if5iEtyLL6bbr1zcjXw7mxpVl34XKt+pqpf1VYMvHcRWukT8One6TtjtaDpS315vAxDvyD7jAVU8/GRqrDuZKq03me3lQsbalRfc4qGsNJ3HFQOF/z0zTvXM4s0xOOr3+/cD6VxOw2NvsBTeroWKrPW9+C8IH0aL0fm5UZlbYdM8P3v7tO0wIb60e14MXFn/uktP3D524Mjp8b1gIe9+3YX9qWL2oMjk8u1x2//uFND0jbY8PV0vYfb7ggOM5dpu/5sw7R9evtzeFjPHb2Funzhzad48Mz9D1h5iPhfXYuCd/rcjEb8D2Pv4ABAEgAARgAgAQQgAEASAABGACABExrEpZPm41UhgvWxc1hIkLdGk246l6oiT9FXbrYPloW+UJ/zAaJqzs1C6Tg+rBgwGXnXSp9ll4dk0RzoiZR3PfBY8OGo7V4RnHM7niX3R/e58zf6Mp9y4n6gA7+Rru0DRwWFmWoXNslfbrP1SIJsqFkzM4fxTt0DJle/T2usCtMpPGpyFSbnk1pzMwsnzYbrgnHHd1hpmKbzrv+Bn1+C3tiiiKUhrcVk+dnPTv0S/0zHgjn9e+2r5A+B/xYC8B0HqEJVqX/GibclByr8yeuaMtf54bb78z82VLps+2MmHn3Fd1pp/vMMNlvwa+1qkTTyZqhlhoN589QjU6Okk5ti9vRq7AjfJCjZeE1jks+nAo+bTYaea8rjOwEV/94TJLUwZpsVtaiiT8j1eFtxbxUbWujvsarHg8L/pze/3Hps/AWvb+uk/X2v/yttwbHvQtjiqXM0ffN/yg9Izh++AeHS5+hM7R40H5X6xiazg6TFJf8T5f02fRGTYS1heH70xPtGheqntS4MzA7ZgeuzrCwkk9PPKzyFzAAAAkgAAMAkAACMAAACSAAAwCQgHFXi51z883sejNrsJ1pOiu99193zn3BzC43s+ezMT7jvdftgXa9rZxZYXeYLVDaHC5qdyzVIdU9ockKfXO0XyYs6mOz79OF/IGndDeL8rYwcaPi0tXSZ91Xj5G2g76+Tdo2XRLufhS3o9AB1zVL245XhYkClc/2SZ/qWzdK2/r/owkMi3/YGRx3LNfKNqmYRKG5vw0rxjS/RivblDdpgkZqWB/jYEOY7JHpD3/+QjuETLZUzLwriezK07OfzqeymMfaN0ezeKIVxGY+rIkntU/HJBK2h/Oz/sf6/Da9e7m0zblVq/Y0nRcmQBX0Sxeb89smaRtYF1arKtmmiVMH3ab3t/kjOq4FvwwTAptO00pYcTvTLLwhHNf2182WPqlRnWPV63USD8wLk91KI89z9LmaKi5nVhRJHCtuC8fSdoTOiZpndM4N1ejfSdHnt+Ehfb/IPRDzHtnWERzPvbFT+jzzMa1eteA2rU7WfFyYMFa0Q8e56Btd0vb4KeF71qyHNNEw//1N0rbxfw6Stv2/ElZpazyrWvq4mOf84E+H792b36mPubJV36RmPqyZjP1zwoTHaEyLSxZ83kTStbJm9nHv/SPOuQoze9g5d+fYz/7de/+VCdwGAADYxbgB2HvfZGZNY//udc49bWZzX/gsAADwQl7UGrBzbqGZHWlmD441fdA594Rz7hrnnH7OufOcK5xzq5xzq7IDMZ+LAVOAeYfptuucyzHnMAETDsDOuXIzu9nMPuK97zGzb5vZAWa23Hb+hfzVuPO89yu99yu89ysKSmMqUABTgHmH6bbrnEsz5zABEyrZ4ZzL2M7g+yPv/c/NzLz3Lbv8/Ltm9uvxbsendYvAXNELJ8eYmTWdqMOs1HwVK+wNz33mUq0+dOB1miCz7oowmWDZRk0+OvAHXdLWcoZ+El8QufnZD2jywtoPaSLY4hvCEzdcoi/gpSu1WsuiW/XxbHl9WCmpbLte07ImTTBY+5mwqkz976WLbX29nlezSpNJBusjz2skAUWqbk2hfNpspCq8w9GKsE+JFnay1hX6+2n12phKWJEKbOsv1etx4Pc0eWPDxeXB8dL/0A+RZj6kiYQtZ+n2kkO14Rjm3Bdzf1/UrQ33/1I4f9a/Q8ew9KuaqDP/Dt2isOWksPKSy+u1qlmvSUZPfzx8vc28X89rO0bnXcFAobSNVoxTYm2avvfhY6qvZUvCsRV26Xk7DtMkv6oN+tij23k++xZ9rzvgppj3usurg+Oln9YEu/1/pgld3Qfq+9Foefj4DvixVuVb/686nxZ/Pkz2fOYKfb894JPrdVxf0evQ/KpwTpc3ap/qJ7uk7emrw/fS2b/R85pO0Xk4549aYa57//A5i1YLjKtS9rxxp6NzzpnZ983sae/913Zp3zVV8QIze3K82wIAADtN5C/gE83sHWa22jn32FjbZ8zsEufcctv5t8wmM3vvFIwPAICXpYlkQd9r8aXzX/A7vwAAYPemdTcky5ulhyKxPPIheHQ9zczMp2IKPdRrv+iaS+lWXU/ZcWi5tBVF6hM0vXGR9ImusZmZ+ZirN/Ph8FvXW0/XNYPS7Xpb3UvCNZySFu3TdLqulQzH5J5Hd3zJDOj6RtcSvTbFG8K18LjbLtmk625Z3fBJiqJEn6+4ggxTxXmz9HB4/9E5FV1TMzNL6/K9DcXMu8H68LbKntU14K6YAjNFHeFtNV64QPqM6OZBsUVUateGa6uNp+quOqln9LzmV0fHpH1aztMiBUMz9DrkIw87OiYzs7bD9ToURtbMhqv0tjPd+gQNx7wmLR/tE/nxdM27uDmXjuS/FOv4c4X6Xtc/Sx97NrIkG/d+0T8vZie21vC2tl++XPoM1esYoo/FzGz2fWGFi+feou9PhY9Lk/UcFs7N4jZ9fDsuO17aug/U2yqIvM/UPakvjq2v1d3DCiJ5MYMxm8OVbNNxDdTptYkW2uifE3mv07eD/z139z8CAABThQAMAEACCMAAACSAAAwAQAKc99NXEcE512Zmm82szsz0W9v7BsY+ORZ47zVrYwow7xK3N419WuYdcy5xe9PYdzvnpjUA/+1OnVvlvV8x7Xc8CRj7vmtffvyMfd+0Lz92xj71+AgaAIAEEIABAEhAUgF4ZUL3OxkY+75rX378jH3ftC8/dsY+xRJZAwYA4JWOj6ABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEFCQ9AAB4uamrq/MLFy5MehjYCzz88MPt3vv6uJ8RgAFgki1cuNBWrVqV9DCwF3DObd7dz/gIGgCABBCAAQBIAAEYACaBc+4K59wq59yqtra2pIeDfQABGAAmgfd+pfd+hfd+RX19bM4NECAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAA8AkcM5d4Zxb5Zxb1dbWlvRwsA8gAAPAJPDer/Ter/Der6ivr096ONgHEIABAEgAARgAgAQQgAEASAABGACABBCAAQBIAAEYAIAEEIABAEjAHgVg59w5zrl1zrkNzrmrJmtQAAC83BW81BOdc2kz+5aZnWlmjWb2kHPuVu/9U7s7J11W5jM1tWHbYNgnXxhzoo+5/7y2pbKR02J+vUiP6I0NV7vgONOn541W6XluxGlbZFwFA3pePqPnpbJhv5EK7VMwoOPKVujtp4b0XLmtwZhxFUbOi7nu2RJtSw9rW64kPDkVuVaj3R2WHegff6CTIF1W5jPVkXkXGXM+o+fFzbHYuZibwBhG9cSRysi864npUxNzWzHPr480Zfp08LkifUGkIuMaqdLbzvTrGEZj5p0bDc+Nuy6ZAR1XtjgcVyrmumeLtC01qm35SD8XeU8Y7e6w7OD0zDtgPC85AJvZsWa2wXu/0czMOXeDmZ1vZrsNwJmaWpv3wY8GbTNWhy/knkX6JlEwKE2WinnTL20LX/Ej5XpbVc/pic+dH0b9WffrbW9/rb7ai7bqbwvpwfC1PfOREekzMFPf7Yu7wrFvO0XHXv+wjqv5NH2XK38mvP24QDJjjY6rb27kvJg30I5Dta1yo7Z1HhaeXNoYTrVN3/+anjRFMtW1tt/7wnlX+WzYp3/OxAJP9A3dzKy4M7zAPq19yrfp9d5yVhgt5v9e+2y8UG+s6ml92UZ/gZh9T6/06V5SJm1lzeG83vxanZuz7tdgu+1MbSveHo6rsFu62MxH9MXccXBxcFwU84tI54H6eijbrv16FofHRe3h87rx+umbd8B49uQj6LlmtnWX48axtsCu9VFz/THvaMAUYN4B2NtNeRLWrvVR02X6GzgwFZh3APZ2e/IR9DYzm7/L8byxtt1yObPCnvAjobbzhoJj36KLPWXb9PcE52M+pjoo/LhupEo/e+08VD82rnskHNPl/+9m6XNj0wpp2/zMQmkbqQ7H1Xy83l+2TMde0Bc+FUU7pIu95bO3S9svtx0hbc3ts4LjuI+gt5+sHzVmIs9N/xL9SLRsgz6evpP1L8zitWHQm8g66VRxOX1sbaeGSxGZJn1cLq8fSxfv0Oeub344P0fLtU/v/GJpq380fGKO+8pD0me09QBp27F1trRFcye2nlUhfXJFOq6WE8PXzIxH9TG/859ulbYfbjlO2pq6wnlXELNWve0UTSKIrsd3HqETtni7NNmOY3U9oObR8HU0UhXpwOov9iJ78hfwQ2a2xDm3yDlXaGYXm5m+UgEAgHjJfwF777POuQ+a2e/MLG1m13jv10zayAAAeBnbk4+gzXt/m5ndNkljAQDgFWOPAvCL5Z1ZPnqP2yNfQejWRZqsLp9Zelj7jVSGa1yLbtGvHG14m659lnSE5/3Lz98sfTK9en9vu+QuabvmztOC47jvzS78zZC0bT8h7Fj/uH7t6Xvpc6QtW6rreoeftD44fuyvi6VPPqPnzftDuKa2qUGvVdxXPwaW6VdlRueH68cF7eFt5WO+qjNVfNpsNLIkWtAaLprGfbc27vvgcd8Xjs7PBb/WE7edpmuyFsljuPWnr5Yucev3R75Rv+n3wKaFwXGuS9e0D7xe5922fwwX52fep+uqX158vrTlinUenPmax4Lj+284Us+r1PMaHgrn+mi5jj1u3g3O1ecs+vW3THc40eK+IgYkhVKUAAAkgAAMAEACCMAAACSAAAwAQAKmNQnLnCaxpCN5IXFFKsoaYzY9yGm/TKTGeuNrNAOqcq0Oa8s5YeKGL9CqESe9RhNfvvfnU6Wt6rnwd5q++TrOzWdrVlnN2rDf1jM1W6Qipuby7FO19sm6Ww4MjuuaNJNnsF5vf+sZ4dhLt+t1H6qVJqu9R4unRDfC6Fmk500Xl9eNLKIFYeIK+2dLta04pkBKYU943HZ0ufSpXafJTU3Hh89BRss329wzt0rbA385WNqqNoTH/VIU1uyZd+m8c5HX1tOfiCl2PRzzejhCX0h/vT5Muqpbq0mQ/bM1wapzadhW3hi3UYgOq/pJffsq6gnnevf+kTkct8EGkBD+AgYAIAEEYAAAEkAABgAgAQRgAAASML2VsFJm2fIwC6KsMfwdoGqjJoG0HqXDHK3QRA2rj+ys1KOZGyOLdYcfPxwmw1Su0fP+4JZJ29w/6xC6F4bH+ZgdaHxK21pPCx+3G9DHLDu7mNlzT+vOOA3bw2s8XKXJVIPHa7UmtyHcwWhgnmasFLXp72zRRDozs+LO8DGWNofnxSU9TZV82my4JjKepvCazFijCUNtyzW5bGiGXsuBOeF1qtio16hlhSa9FXWFt1XSovNiywPzpK1mgzRZ+6vDC1pUoY+nIKtjOG7hpuD4uR7NsmtqrpG2e54+UNrmN4ZzuGBQk7fajtM5lRqMXC+n16Fyg173uKpkxZ3hffYPhbcdc9NAYvgLGACABBCAAQBIAAEYAIAE7NEasHNuk5n1mlnOzLLe+xWTMSgAAF7uJiMJ6zTvfftEOrq8WXowTKaIJhblCjXZovI5zZzoXhyTlJEO+xU/p0kn/YfqH/2ZyFZ5uZiqO25Yzyt5n1ah+s/9fxYcN+cqpc/77327jqE4TKIpXKcJQDPWaIKay8ck7lwUJqKcsERLaPWN6u2vHp0THOf7Nctl+GBN7hkcjbk2G8PbL9sWjjM1jRWJnDcrGHrheTdYp4+1qEOv7UhMQlsqsjVm3BaCtU/pbUXn2eBMvW0zPW/p5U9L2/fn3B4cd+W16tWn1uk2m+9uuCc4vjlzjPTZvqluIsOy5khlr8XHtUqf5WnNvltzT7hdZmGnzqfug2ISAtv1eu1YFj6Pxe2ReRdT6AtICh9BAwCQgD0NwN7M7nDOPeycuyKug3PuCufcKufcqlx//x7eHTAxzDsAe7s9/Qj61d77bc65mWZ2p3Nurff+7l07eO9XmtlKM7PiuTE7EwBTgHkHYG+3RwHYe79t7P+tzrlfmNmxZnb3bk9wY//tOoDILjUtx+m6TlzhCqvXtcjCZ8Lta/rn67pRVY3+NTSwNVyMG5yl5930hm9I29KM9tucDcf60/Zjpc93T7pW2u7tWxoc/+i5U6TP1gt1Aeumk78jbfXpsNjIPYMLpM/nf/UWaSs9INzWZ8H8Zunz1KY50uZ6dP00Vxxeh54DIj/XJeip48zymUh+QGT9sH+2fhiU0potsTskVWwKjwdnaZ+BOTqvq9eFx32L9Pn9/eu+Jm0NaX3Z5iKLso/0zZQ+/33wj6StPrIo+t/DZdLnNct1J7APNdwlbalIlYtPPnuh9Fl35xJpy80IX0dD9dLFilv1+XFa50PWeKOFU/KaFgIk5iV/BO2cK3POVTz/bzM7y8yenKyBAQDwcrYnfwE3mNkvnHPP386Pvfe3v/ApAADAbA8CsPd+o5kdMYljAQDgFYOvIQEAkIBp3Q3J8mbpgTApom9x+MX84hrdWmd0U7m0pTIxGRgRRTFf6B+YFbNDUn14W2tf/y3pUxBzqbKmY1hQELbNLuqWPpf/5VJpO2FxWCwjvVh3K3r6hOukLe308XTnwzGcVLJZ+px1ymPStr4nzH5pH9CEHOvV6xCXDFPcFkl+iQwz7pyp4kZ1PNmSsI+PSc6JFnEwMyveof2ypZFdjZpjim6UjJ9c+Njrvy59Sl2JtA17LWZR7MLn5byy56TPz3p1B6MLK54Jjj8xV1eRji3SJLtRr/OgPTcYHC+s0Iu1/RgtTJPrCDPbah7S+0sP6zWNK3hS3hRem4H6cJzTuQsXMB7+AgYAIAEEYACYBLsWf2lra0t6ONgHEIABYBJ471d671d471fU18d8mRmIIAADAJCAaU3C8mmz4UjVm1R/mP1S9qAmXO04RjN2Ul6TWob3DxO4/JBm1hSu18SimsM7guPGrFbZmp2O2SIpRsaF93lAse4Ic9qBz0jbIy3zguMLFj8ufZpyA9JW5vR3qKJIQk5dSq9D14gm97xlzsPB8ZceOVv6FM/WSmLDg5o0MzgnfM78pvC6T2dFIp8xG6oPk3jKtoZ9Sts1o6d7oQ4yrVNDdgZKx1TQKtmhc7j5hHAO/36gQfosK9RqZPXpmCSvyCAas/rSPrNsnbTd1r8wOJ5Z0Ct9uvNdMW36eGpT4X2+r/5P0ufOvx4ubdFkqtEKfW0PzZAmqbZmZtY/J3ydpiLDjCYDAkniL2AAABJAAAYAIAEEYAAAEjCta8CpUbPSpjDmD9WF6zhdy3Rdp3CHrsWNDusaplWHi2/pMt1dJre/fhN/6MFwganhKL0s0bVdM7O86bphKvI7zfyMFiOYXawZkq/dL9yJ6OZnlkufz524Stqi671mZsM+fNxxY//s3Nuk7by7PhQcH7a4Ufo091VI28hz2paL7D5UtSn8edw66VRxo2bFreG6Yq447DNQr7+LVm7R57dvbsyuSZF14YEGXcPsn63Pwf6/DAtXLLtA13tnxKz3jnpty0TuMrozkZnZLb26/npBxRPB8Se3vFH6nL7/76StPK2PcdCHT+qcAn39veOke6Xtl9eEO38N10oXK+zRtoIhHUPlpheu8BK7hg8khL+AAQBIAAEYAIAEEIABAEgAARgAgASMm4TlnLvGzM4zs1bv/aFjbbVm9lMzW2hmm8zsIu9950TuMBXJy6jYFB4P1envBPnDtDhAZr0W7Kh9IPyWfcurNRGldKsmwyy4LtyJ6PAlH5A+Hz/2Dmm7IppZZLojzJV/uVz6FD9TLG3RAiWLP/aA9Lny/jOk7YOz7pK2owvDp7XPa+bJG+59v7SVbAyv32qbJ31m/kmLbuTP0NtPFYTXvncofMy56SyIkDLLF0XaIvlVxR0mWo/SJJ/SJu1X0hHe2HCtzuH6xzUhqXDd9uD40s9/XPrMfPcmabth8S+kbWs2HMObf/oxHag+HPvPhlOD4yWXPiJ9TvzNxdL2pYNulrZXFYcJUI8NaXLeLd8/RdrSI+FcSY3GDHSCeiLFU6JFPqZ13gHjmMhfwNea2TmRtqvM7C7v/RIzu2vsGAAATNC4Adh7f7eZRf8+ON/Mnt+c9joze+PkDgsAgJe3l7oG3OC9f/7DuGYz0yK2Y3bdois3oHWEganAvAOwt9vjJCzvvTcpRx/8/G9bdKVLdSMEYCow7wDs7V5qJawW59xs732Tc262memWPzF8ymw08l6YLQkTLmaeFCammJltfnamtJX2aaJG50FhW+kWHUP5KTrUtpPCZJGHD/+m3l9Kk4+acpp89M32k4LjOQ1d0mfbYJ20vWb5U8HxI7ccJH2unfs9aatNR7OLdNek1z2iiWD5mJ2ihiI7GC1e2CJ9tr+xUtoaSoekrXlzWF0sHamMFZcQNFW8M8tFnr5M5I/iHUfo75DFbfr7aVlzTHWseWG/8ka9rYE6vd7dFx0QHJ/3nnukz9uqH5S2X/fPlbbP3xgmSmXnaMU3G9XH84lj7gyO162aJX3+b8O10lbq9PXwu4Hq4Pif/9+lOgTN67PRyF2W6VuAJM2ZxVfMil77nv3Dn/tp3IULGM9L/Qv4VjN7/tV1qZndMjnDAQDglWHcAOyc+4mZ3W9mS51zjc65y8zsajM70zm33szOGDsGAAATNO5H0N77S3bzo9MneSwAALxiUAkLAIAETOt2hD7jbXBuWBGouCkcQus9c+S8omgCj5mN1Gibj2zdNlKnfY6q0SSshqKw0tYPug+VPh+oWSdt73vVRdK24f0LguPKDdLFDnz7Vmlr7K8Ojt+86DHpc9+QXps3lGkBsvee+vbguP9DVdLHFeq1OfzQTcFxTdGA9Gnp1QpkmVTMtozlYRLQnNvDpJ3Wvt0mzk86n9ZKYwVD4e+e9brTo/XP1rbBmG0LfaQpG7NT5nC1Zp25Y7qD4xueOlr6XHLCX6Xtf856tbSNfjJ8fA1/1Jd28Tt1u8M1kYSu4yt0wq6KyXZ6dXG3tH37iOXBceXRmpzXu1AvTsFgeG0GZ+rcSMdsPThSrfOuPxc+GXVPhImF28NCdUCi+AsYAIAEEIABAEgAARgAgARM6xqwyzkr7Ai/CV/SOn6Bhn5d+rRseU7ailvChzNcoGtEB5bpGvDPNx0RHHe26i4uta/uk7bP36tff15SEK59Nusw7eaeo6TtkqpwEXL96AzpsyWm7Y7BEWn7yh9+HBwvKNCn+YkRrUjw8WfeEhwXpHTw86p07W/t6vnSVtgV/m6XHgrX/qO71EylVNasuD0cT/T+4wo0TLRoQzqy1DlcE7deGVPo44FwbT5doX0+UKdfQnjzbY9K26dKfhUc956jO2790/pzpe3cmseC40cHFkqflqzmENzbd6C0vffxJ4LjEb9G+nxm1QXSlm+PFJOJue6pQb2mZY3690PBYHgNM73hHHa56cs9AMbDX8AAACSAAAwAQAIIwAAAJIAADABAAqY1Ccu8WWo0TKbIxRQtiMoVa+JEpla/5D8yVBreXXlW+qzt091eeteGhQYOPmaz9DmpZKO0LSwolbZtkR2SftevRT1OK39K2ooiOSaPxCTDrCjVMRxV1CVtdelwy6nWnO6He2v3Cmk7pj7cPqp1SJPRHm/SnalcjSaCpVrCJ7ZjaViII/vw9G2H5FM6h1w+vP/hKv1dNKUPy0b0klg6silWQcz2w0VaL8WGIvUtSlv0mrxx7mPSdnbM/PnTwJLgeP2gbtH9iQPulLZlmfbg+Ludp0ifQ6t0e6KKaOaZmR1RGBb6eM1tH5M+xc36lpOPFIWJK7oRc3exBU8qGsPsupGq8P58ehq34QLGwV/AAAAkgAAMAEACCMAAACRgIvsBX+Oca3XOPblL2xecc9ucc4+N/fe6qR0mAAAvLxNJwrrWzP7TzK6PtP+79/4rL+bOXM4s0xO29RwUVo6qmR3pYGaFIxlpcy6mstD+YZWmocFC6bOlt0baZhzaFhzftvQ26WOmuwDlvJZzakiHVX3+rlKrAXXFVIGqSIXlf+ISrs4qHZU2s7KYtlBNSqsiHVuutz+UD6/zj/uOkz5xdYR8Tn+Py5aHPQt7wuSX6UyF2TnvXjj5L6v5dFbaoo922OvICwbCfrlC7eNT2paJFFe781Nf1jE4nftNMdWcjo8kCQ7kde7f0XWItC2ZGVaGO71urfT5UI0mJcbN/dZI4bT3n3SX9PnOHWdKW+UBXcHx4GO6+1I6ZuJVP6tjKOoIEy8HZ0auHzlY2IuM+xew9/5uM+uYhrEAAPCKsSdrwB90zj0x9hG1/lk5xjl3hXNulXNuVW4g5vsZwBQI5t0g8w7A3uelBuBvm9kBZrbczJrM7Ku76+i9X+m9X+G9X5EuHf/jUmAyBPOuhHkHYO/zkgpxeO9bnv+3c+67ZvbriZyXLzAbnBnZraQzsoPRZt3xJ31Ml7T19+q6pnWG614FMwelS+uDWojjqotuDo7bYwpXxK3FpV3MemBkK5cRr4tX1THrgY+PhIuSswp6pc+o1zFk3Phb9qRiFr56cnr9DigM1wPzMeuds2p1jX44q9OoszBcVO2uCZ+buOIqUyVfYDZUH95f+dbwsZW06Xpi/6yYte2YteJokY0hncJW/7iu37ccEz6fP+9bIn0OjBS3MDObX6AVQqpT4dpnsdP7O71aC3hc9dybguPT6tdJn6as7gQ2EPP01abC6/Wasqelz3+Vni5t0XnmU3rj/Yv0+Rmp1ueneEeYg5GLbLSU06VxIDEv6S9g59zsXQ4vMLMnd9cXAACocf8Cds79xMxONbM651yjmX3ezE51zi23nUmxm8zsvVM3RAAAXn7GDcDee90R3Oz7UzAWAABeMaiEBQCTYNfM+7a2tvFPwCvetO6GlMqZFXaHCRdDy8JEqdFKTTQqfKpK2vysmKIUZWEiSm2VJlOdff4qabv6pxcGx2/7+29Kn4kkO5lpgYL6SGEOM7OOyI5JZmZHFYbbvXyoUQsW/GC/eyY0hqi009+zXlO6SdpO/uM/BMcl5TrOgW7dgsbFJM1YpK1yXTjVWoenryJCKmtW2hzeXzSZqne+XqPKLZr4M1Sj4x6sjxQZiSm00rOfvtQW/ix8kz783VulT23MNkAVMUl8UfUxSXyPDiyQtnfOuT84/tyv3ip93nexFpOpiy0QEr6Wl2b0Qlx54h+l7VdfeE1wPHKIPr6SRn39lTXpvCvZEb4HjJaGz2t056rJ5L1faWYrzcxWrFgxfVmG2GfxFzAAAAkgAAMAkAACMAAACSAAAwCQgGlNwjJvlo4U8SlcHyb1uMiOKmZmi8/SnXvWbJ0tbUVrw9tqHdSSRDc+cIq07f+NMMnkqMPfoecd+T1pO7hQyyJlLXwA7950lvQpi6lktLg0rELVeoGWT/zynQdI27urnpC2unR47rDXhLXXPnyFtBUUhQksA606hoZ79Xe2HUdo0kyuKMxBGYxUovLTOfOcWV5zhgJxyTldB+hjLWnV3JrC3rBtOCZRq+GedmnLrQvn9Uc/+wHp03mBJhL+8fhvS9tQZFife/x8vb+sPp5fFh0eHB/4ZX2tve4w/Sbi5xffKm0nR4qrfatL5+sN39bkwtHF4XGkqJeZmVVs1YSuwRn6eIarw4kVfT8Zbx4A04m/gAEASAABGACABBCAAQBIAAEYAIAETGsSlk+ZZSOJGrnSMHuk+jBNVnn6wUXSVrlZE126Dg+TjTId+vBGl+oWhQM31gTHdxy0UvrMTGvCVVxy0zc6DwqOr5ytlX/aspXSdlTR9uD4bQ8+Kn3mFZRLm5kmSkXHdeoTF2ufYb02fkt4W65IE45aXxVT4Cdmy8WiHWHlouG6MBvGT6yw2KTJRx5utFpVz4Ga/VeyXQeZidmHb6QysrVhi/bpPrRWz3tVXXB88gcelD5vrdW2p0a1Mtzlv/374NiX6uNJZbTta8fcGBz/5Y4Dpc8Hav8qbVUp3dfvL0Nh1bebvnC2jqE2pnpVpGpjzC6YNlylfyuM1Gi/ik3h7Q/Mim51qOcASWE6AgCQAAIwAAAJIAADAJCAcdeAnXPzzex6M2swM29mK733X3fO1ZrZT81soZltMrOLvPedL3RbPmM2NDtchypqDdfZ+u+tl/OKY4pz9C6MWUvaEn7LfqRWv7yfz+kC07lzVgfHt/Uvlj7vqtwubWddqYUTzv/X34fn3X2Z9PnVqf8pbRMRt+ZcFLMrzevfEq4HpuYWS5/C/XV985gLwutw9wOHSJ+4LV7SM7SKRX5meO33/3Y41To6p2+zmHzGbLAhHE9ZY/i759w/6HmdS7WtZ5H+zlrYEx5n+nTe9c3R6z04O7wGf/7OcdLnLZ9+SNq+duprpa3gy2FuQ9EqzRc47WK9reZsuJ58Ytkz0mdHzGumJqXX4csnhkU2qjPbpE/jhftJW//c8HqVtMZc4+6YAijdOq6RirCtdm1Y1WNLtGIJkKCJ/AWcNbOPe++XmdnxZvYB59wyM7vKzO7y3i8xs7vGjgEAwASMG4C9903e+0fG/t1rZk+b2VwzO9/Mrhvrdp2ZvXGKxggAwMvOi1oDds4tNLMjzexBM2vw3jeN/ajZdn5EHXfOFc65Vc65Vbm+vj0ZKzBh4bzTesoAkLQJB2DnXLmZ3WxmH/HeB6te3ntv8cuD5r1f6b1f4b1fkS6P+x4rMPnCeafflQaApE2oEIdzLmM7g++PvPc/H2tucc7N9t43Oedmm1nr7m9h7HayZpnOMOZny8K4XbFJz+vVOhyWL9R4PxRJtHFZTdL4zgn/I20/aT8+OP7mvDulz9pRvb87vvMtHVjE209fLW2rR7QQx8nF4Q5JTTktGBJnS1Y/VbjuhnBc9w3NkT7/76lzpe2+uw4NjkuXdUufwUEtwFBUrMlhA9vDX7Z654fPe+6JmGoLUyQ1albSEt7/UGR3puE2/V10tDymwEiHjruoM5x3cUUjeg7WLX5KtoYvv9Pff5/0+UbTGdJW81N9zj9X+0BwfOvc5dLnT42aXPjpo8JCMb8b2F/6zC3okbbXrX2jtDX9Vzivs0/qPC/skiZJiIt5eVj/PE1s8+WanVn9SDg/h6rC5Defnr55B4xn3L+AnXPOzL5vZk9777+2y49uNbNLx/59qZndMvnDAwDg5WkifwGfaGbvMLPVzrnHxto+Y2ZXm9mNzrnLzGyzmV00JSMEAOBlaNwA7L2/18x297nN6ZM7HAAAXhmohAUAQAKmdTckc2Y+co8F/eEf19kSPS1bo0k+6R6tLOQbwkQm11IkfbZndQuVu9eHySlHb9asr2uOuVbacl4Tazry4RjWxexcU+z08fTlw2pSH3zuQumz+imtInTwQY3Sdlr9uuD4v+7VDypSg/q7l58bjn2kXbOHS2sHpG34Gc2aqdwePq+54jChKW7Hm6ni0/EJVbuK7o5kpnPTTOevmdmOI8J+M57QGyvdrCeWNodj+sM3X6VjeIvmNp42a720PTscfgvwyabZ0ufAhjZpWzcaPnf/tlp3MCp4qELa4l6nw4vCObz4dp0r7YfrrmIFQ+Fx7wExCVfpmMp3GzUhMLrr1WgZuyFh78V0BAAgAQRgAAASQAAGACAB07sGnDdLD4ZrMkNzw/XQfJsOael/6VpS08m6ttqXCtd849Z7WmLWZN99xP3B8YdqH5U+A3n90v+R135S2n78tq8Hx2VuRPr8oW+ZtM2qejg4/uDcu6TPskW62dSGUV1/vfqiS4Lj9Md0zTlnuouS6w7b5izV9cft22qlLRVTFKVqY3i9Og4Kn1evS/hTxmXNitvDeTdcG445unZoZlaxJWZhOGbtumAgnGjDVdopV6LXaGBW2G/BWZukz2BWn6f7rzpW2qo+szU4rqvU8ptr79PchuqLw4IvFyx+XPrsd8gOabuh8RhpK359U3DsDtKiHma6BjxaHlmnLdfcitL1ms8xUqnXdM694Tp061HhTmCsAWNvwnQEACABBGAAABJAAAYAIAEEYAAAEjC9SVgps3xRmDhRvC1MMql/QhMw2ldoolFJuybIDNVHkl9iEmZ+2Xi4DuuauuD4nit115htd2oRjHytJoG85+sfCY4LTm+XPhVFmpjVkAl3Hlr5rxdIn4K/a5G29HfqpK1/RZjhtOjburNS4xn61BdE8na2V2rRkrL1WvxguFqvQ2F3mPjlCyL3N52FOArMhmdE5l1bOICibk2yG5g5sd9Ps5G8ooKYba+ju36Zmc25O5wHbS0LpE/9z9ZIW/PbdHer/JfDczuO1Oc3X62vmc9tfmM4hu8vlD7tR+vYD/qqFoDpOXd5cFz5SJP0GZqhcyoTybFMdWniWVxCXLZYJ1FqOPI8svkR9mL8BQwAQAIIwAAAJIAADABAAsYNwM65+c65PzrnnnLOrXHOfXis/QvOuW3OucfG/nvd1A8XAICXh4kkYWXN7OPe+0eccxVm9rBz7s6xn/279/4rE70zlzMr6AuzIqo2hskVOw7WIdU/ppWcug/QRI2ijvB45iND0mf4YU1aiiaL5G7VXWMKb9Kdger/S5PDNp8b/k5TFHN/DT/U5JSVJ4RJV3V/1iSX/I06rrX/rrd/4HVhNtUz7yyWPiU6BNvvpvA+t75pnvQp7tCEnPpH9fkZmBUmaxW3hec5zbWbMi5nVtgdycaJPIzuRVqaq7RFH+twtWb1RB9L9Ua9HrVrNYmoaEs4YTN/2CJ9mt+rVa9m//I5aes8eWFwXNKqY1/0XT2v7aywWlXN073Sp/amDdK27otHStviH/cExx0naLJYUbc02Zxfh/Nux4l6XmZQH09pq06ioYawYlZRZ3heSnPtgMSMG4C9901m1jT2717n3NNmNneqBwYAwMvZi1oDds4tNLMjzezBsaYPOueecM5d45zT7xfsPOcK59wq59yq7IDWpwWmwq7zLse8A7AXmnAAds6Vm9nNZvYR732PmX3bzA4ws+W28y/kr8ad571f6b1f4b1fUVCqH+MCU2HXeZdm3gHYC00oADvnMrYz+P7Ie/9zMzPvfYv3Pue9z5vZd81MF6sAAECscdeAnXPOzL5vZk9777+2S/vssfVhM7MLzOzJ8W7Lp3Rbts6Dwt8BSmISX7adFpOY9YgmtRRGqhltfLeO4aCrO6Rt/ZXhkvbiqzVTpO5fNZGp7ShNBCvZHh4vvGGb9HnqMzOl7eCvhAlW66/UBKgD/qVL2pZeo1Wutp9cERyXbZYuNvsBPe+pT80Kjmfdrde4+XRNfMnfr9dheEaYrJQKd4mb1m3hfEq3rotuPyhJWmbWdZDeVtV6nZ/Rx9J8vF6P+b+L2R7wo+E8OPjLmiE08yFNimo7W7cV7J8djn/eXXre05/W8w7+Ujg5NrxPq3EtbquXtv1/rluEdhyuSYlRlZt0/jx1VTjv5t6p13j7yfr8zHhMr/NAQ9gvmjSotwwkZyJZ0Cea2TvMbLVz7rGxts+Y2SXOueW2c05vMrP3TsH4AGCf4Jy7wsyuMDPbbz8tXQtETSQL+l6Lr6h62+QPBwD2Td77lWa20sxsxYoV/LGNcVEJCwCABEzvbkhm5vLhH9PR9bPRCv1jO7pLj5lZ3xztN3BMeFy0UdeI2o8rkrZMT3hbje85RO/vAF2fK9HlXauL7Oa04TItKlDYrOe1nRCus2V69fG1/t2h0tZ5SEyBh8gGTDMf1XW3xlNLpK2gJ/ylPbquaGZW2KzXdCSmOEUqsuHTSORLan46Z543Sw9FxhjZlSsdWaM2012OzMyGZuhjHY7silXYqed1L9EbK98Y3lbTa/Xr9SOVen9x6+fVG8L5+dybyqVPaZPeVvvp4ZpvUUdMn5M1H6FvnvbLRzbKqlutr5mOmEI7ZZvC44F6/eOxpFnvb1QfoqUj824wskPatM47YBz8BQwAQAIIwAAAJIAADABAAgjAAAAkwHk/fdnyzrk2M9tsZnVm1j5O970VY58cC7z3WuFhCjDvErc3jX1a5t2KFSv8qlWrpvpusA9wzj3svV8R97NpzQl8fuI751btbkB7O8a+72HeJWtfHjswlfgIGgCABBCAAQBIQFIBeGVC9zsZGPu+a19+/IwdeJmZ1iQsAHglIAkLz3uhJCw+ggYAIAEEYAAAEjDtAdg5d45zbp1zboNz7qrpvv8Xwzl3jXOu1Tn35C5ttc65O51z68f+X/NCt5EU59x859wfnXNPOefWOOc+PNa+T4x/Mu1Lc85s3513zDngxZnWAOycS5vZt8zstWa2zMwucc4tm84xvEjXmtk5kbarzOwu7/0SM7tr7HhvlDWzj3vvl5nZ8Wb2gbFrva+Mf1Lsg3PObN+dd8w54EWY7r+AjzWzDd77jd77ETO7wczOn+YxTJj3/m4z64g0n29m1439+zoze+N0jmmivPdN3vtHxv7da2ZPm9lc20fGP4n2qTlntu/OO+Yc8OJMdwCea2ZbdzluHGvblzR475vG/t1sZg1JDmYinHMLzexIM3vQ9sHx76GXw5wz28eet1f4nAMmhCSsPeB3fodrr/4el3Ou3MxuNrOPeO97dv3ZvjB+qL39eWPOARMz3QF4m5nN3+V43ljbvqTFOTfbzGzs/60Jj2e3nHMZ2/lG+CPv/c/HmveZ8U+Sl8OcM9tHnjfmHDBx0x2AHzKzJc65Rc65QjO72MxuneYx7KlbzezSsX9fama3JDiW3XLOOTP7vpk97b3/2i4/2ifGP4leDnPObB943phzwIsz3bshZZ1zHzSz35lZ2syu8d6vmc4xvBjOuZ+Y2almVuecazSzz5vZ1WZ2o3PuMtu5xd1FyY3wBZ1oZu8ws9XOucfG2j5j+874J8W+NufM9ul5x5wDXgRKUQLAJKMUJZ5HKUoAAPYyBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAABJAAAYAIAEEYAAAEkAABgAgAQRgAAASQAAGACABBGAAmATOuSucc6ucc6va2tqSHg72AQRgAJgE3vuV3vsV3vsV9fX1SQ8H+wACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAAIwAAAJIAADAJAAAjAAAAkgAAMAkAACMAAACSAAAwCQAOe9T3oMAPCy4pxrM7PNZlZnZu0JD+elYuyTY4H3vj7uBwRgAJgizrlV3vsVSY/jpWDsU4+PoAEASAABGACABBCAAWDqrEx6AHuAsU8x1oABAEgAfwEDAJAAAjAAAAkgAAPAFHDOneOcW+ec2+Ccuyrp8bwQ59w1zrlW59yTu7TVOufudM6tH/t/TZJj3B3n3Hzn3B+dc08559Y45z481r7Xj58ADACTzDmXNrNvmdlrzWyZmV3inFuW7Khe0LVmdk6k7Sozu8t7v8TM7ho73htlzezj3vtlZna8mX1g7Frv9eMnAAPA5DvWzDZ47zd670fM7AYzOz/hMe2W9/5uM+uINJ9vZteN/fs6M3vjdI5porz3Td77R8b+3WtmT5vZXNsHxk8ABoDJN9fMtu5y3DjWti9p8N43jf272cwakhzMRDjnFprZkWb2oO0D4ycAAwBekN/5fdW9+jurzrlyM7vZzD7ive/Z9Wd76/gJwAAw+baZ2fxdjueNte1LWpxzs83Mxv7fmvB4dss5l7GdwfdH3vufjzXv9eMnAAPA5HvIzJY45xY55wrN7GIzuzXhMb1Yt5rZpWP/vtTMbklwLLvlnHNm9n0ze9p7/7VdfrTXj59KWAAwBZxzrzOz/zCztJld473/52RHtHvOuZ+Y2am2cxu/FjP7vJn90sxuNLP9bOfWihd576OJWolzzr3azO4xs9Vmlh9r/oztXAfeq8dPAAYAIAF8BA0AQAIIwAAAJIAADABAAgjAAAAkgAAMAEACCMAAACSAAAwAQAL+f4MwwBRNflgcAAAAAElFTkSuQmCC\n"
 | |
|      },
 | |
|      "metadata": {
 | |
|       "needs_background": "light"
 | |
|      },
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": "<Figure size 576x720 with 6 Axes>",
 | |
|       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAKGCAYAAACSkUhPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABg80lEQVR4nO3deZSk2Vnf+d+NLfesrKx9667e1S211I0KISxAArHIwIzEYlnyMRaGoeEYYbDxInPGhvEyw/GwGA8M0FgCMWAtGGGEkCxES0JIQq2ubqTe96WWrspasyq32O/8Udk4732eqsyuysxb1f39nKOjfm/deOPGGzfiiYz7xHNDjFEAAGB9VUoPAACAlyMCMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGMBFCSHEEML1pccBXKkIwMDLUAjhB0MIny89DuDljAAMvMSEEGqlxwBgeQRgYJWFEL4mhPDXIYSZEMIfhBA+FEL494v/9t0hhK+EEKZDCF8MIbx6ye2eDSH8sxDC/SGEM4u3G1zy78vd9l+GEO6XNBdCqIUQ3hNCeGpxHA+HEL5nse/Nkn5D0teHEGZDCNOL7QMhhF8IIRwIIUyFEH4jhDC05D7+eQjhSAjh+RDCD631dQRe6gjAwCoKITQk/ZGk35E0KekDkl4IfLdLep+kH5W0SdJvSvpoCGFgySneLuktkq6R9GpJP/gibvtOSd8laSLG2JX0lKRvlLRB0v8h6fdCCDtijI9I+jFJfxVjHI0xTize/ucl3SjpNknXS9ol6d8s3v9bJP0zSd8m6QZJ33op1wkAARhYba+XVJP0n2OMnRjjRyR9efHf7pD0mzHGu2OMvRjj+yW1Fm/zgv8cY3w+xnhK0p/oXDB8Mbc9GGNckKQY4x8snqsfY/yQpCckvc4bdAghLN7HP4kxnooxzkj6PyW9Y7HL2yX9dozxwRjjnKSfu9gLBOAc1oqA1bVT0uGY7nJycPH/r5b0rhDCTyz5t8bibV5wdMl/zy/5t5Xc9uCS/1YI4R9I+qeS9i42jUrafJ5xb5E0LOnec7H43CkkVZc8rnuX9H/uPOcBsEIEYGB1HZG0K4QQlgThPTr3dfBBSf8hxvgfLuK8K7nt3wT9EMLVkn5L0pt17qvmXgjhKzoXVJO+i05IWpD0yhjjYefcRxYfxwuuenHDB5DjK2hgdf2VpJ6kdy8mQr1V//Nr39+S9GMhhK8L54yEEL4rhDC2gvO+2NuO6FyQPS5JIYR/KOlVS/59StLuxTVrxRj7i/fxyyGErYu32RVC+I7F/h+W9IMhhFtCCMOSfnZllwPA+RCAgVUUY2xL+l5JPyxpWtLfl/QxSa0Y435JPyLpVyWdlvSkFpOsVnDeF3XbGOPDkn5R5z4QTEm6VdIXlnT5tKSHJB0NIZxYbPuXi+f9UgjhrKQ/l3TT4vk+Iek/Ld7uycX/B3AJQrpUBWC1hRDulvQbMcbfLj0WAJcP/gIGVlkI4Y0hhO2LX0G/S+d+TvQ/So8LwOWFJCxg9d2kc2umI5KelvT9McYjZYcE4HLDV9AAABTAV9AAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCggEsKwCGEt4QQHgshPBlCeM9qDQoAgJe6EGO8uBuGUJX0uKRvk3RI0j2S3hljfPh8t6kNjsSBkcnsRCsZpG3r15x+3fQ4Oh8vQt+2ef1yla5ti1WnLXs83tg9+bjy85zv/qptewf92gou6kWMSZL6zhi8x2hum82z1vxpdVpzqzPQZdQbI3FwcGPauJJ79uZd3d6w0sk6evPJm3fZtXSvY29lEyhWs3Gt9GWd93PG7s1F85i9MVzss+uM3Zxb/rUJ/awtO262ptXuzq/5vKsPjMSB4WzOreCCBOf92Hs9V7ppv753ffJrIUlh+eeo0raTtV/z3kzTQ2+erPT9L+e9J1ebzrjqaUfv+sWK92aa9vPGGfNrdR75dc7P1WyeVrvtv9c5YWzFXifpyRjj05IUQvigpLdKOm8AHhiZ1Cu/86eSNu8NzQyyaa/Owmb7DA2cTp+g7qA9d33enqsznPVznvyhk/bJb4/ajt3B9LjWtOfy5I+x17B9OiP28Ywe7pm2+S3pO7v74cF7PWWXxrvurXE7hmrLnquWvViq2Rv2Vz7zK/ZGa2RwcKP2fd27k7b8heupdOxzPre9btqGpzrJcW/IfkqpLtjnqTuS9gu2ixozHdvoaI+n46q27Ni9N6L8zbY3ZK+LFwAGj9snvTOeTlrvA6Mr//zStfOuPW5PVp+xF6w+m072Sis9/tJDv7nCQV2ageGNuu2bfzJpcwNBpuJ8oF7YbB/70Mn0sbfH7PNWn/MCVjoG77kdOWKf2+akfUPqNdLbukFzBX8geMGvM2THNfH4vGlb2JG+4XrXrzNiB1bLXh/e7XoDK/uCuDafPhfV7DW1/55fO+9tL+Ur6F2SDi45PrTYlggh3BFC2B9C2N9tzV3C3QErt3TedTrMO6w93uvwYq15ElaM8c4Y474Y477awMha3x0gKZ139TrzDmuP9zq8WJfyFfRhSXuWHO9ebLugfG0w/6q1MbOCr4gl1Z1++Vc8K15/yE4/MG2/uukO2DEMnbDf7S5szi6pt7bgfVXTyr8+d75ym7Mnm99q+40cTcfV3Ogt3NrHk4+rZ79tVbVt2+rzzvXKvv7Pv/payddxqyq7dL1sfLVZ5yvi4eW/+pOkfvZVlbf25n2tmrdVFy7ua2Ovrdewkyz/akySqq308XhfQdfm7GOe2zVo2oZOpF+XtybsBPLW8fL1Xe/1UXO+Ts2/+pPs0kK/nr3BVNfnhx8h2pyU9oZszjlLPO1xZ2ntrPP6yp4nb5mp2nLOn31V3Zi15/aet4FpuxSS93PXr5216cGTyy+rhA02NDW3DZi2xpn0gc/utF+V58thktTJrl/NTcCwTYPH7RtgZzQda2ckPb5QjtGlzMZ7JN0QQrgmhNCQ9A5JH72E8wEA8LJx0X8Bxxi7IYR3S/qkpKqk98UYH1q1kQEA8BJ2KV9BK8b4cUkfX6WxAADwsnFJAfhFq0jdLL08/wlLntp+rs/Kvp/Pb1tbWNl6cr5+4qX0N2btuWZ228uXr2F3Ru39uePKUuW9ddXmhhWOa086rrrTJ/+5lGTXmHvOurf3My7vucjXt+rZGqu3JrpmKnZts5Zd376zZpr/pEXy1+bznw/l66qS1Bmzc2Ul6+Leeq83hsZ0ujbVHXMW8J216faGtF/jlF3jyn/qIZ1v/TJ9jN66Ydf7iVYzvV75z7Mkfx069Jy18CyXojqXPp7QcX7rtQZiJag7nK23ZuvY3vPtXVe3JkA2Xb2fHHWcn0nm73XeGu3AtJ33+bqmJNWynAXvp2Le78Wbm9I5560JNzfasQ+fsM/d7K50zddb0/Z+0pRfh5X8LFOSoldjIc8hOpUGtXCB9zpKUQIAUAABGACAAgjAAAAUQAAGAKCAdU3CCn2bxNOcSFewvR+UBycLoWd/k220x5wfgU87ySNZopRXk9crxDF8wkmUmlj+M01+f5I0MpWea2HSnmfkmB3YwqRNfBg4kyWCOUkI3mNsZvc5fNypf+3Uo67bEq1qZzWj8wS51dowYiVC3xZt8JJKcl7CkLspQJZo4t1u4IRTXzcvLODkaszutMlUE0/bAuPtjWkyilcLutK1bY3pdFytzUOmj1cgpO8kS+aJdnmBgvONK09Qy4srSH6BkF6058/r99aG0+sXn1tpgepLE/rRJPrlyZ2VFeaDrSQJy0scHTxl7yAvyuPWi3ZemzWnlnl+rQdP2GSq0zfawhj5e93MHttnw9M2GfD4bfZNf/Kx9D4XNtk54W3ake8lMHbIzjlvnwKvSEn+nm8Ky1zgvY6/gAEAKIAADABAAQRgAAAKIAADAFDA+lbCis4OMK2sMpZTOSU6O/d4CSv5Tj3e4nu+S4/k7NDkJHgNnnYSkpxKM3ly06Czs5KXVJEnCW04a5MCvGQFr0rY7K5K1sfen1ehJk+O8K5V1dnIxKteNpAlu/XXd6al+lGVrNpSNds1x6sS1XMqTnkJKtUsQaXqzLvWZjupqlnVo9YGZ2erY05VomF7MVdSWcxLijLncSpvNZ3ElrGnZ01bdyx9jN4c86oC5RWzvEQXb6cd9Z3qZTN5iaN44eO1Eu3uU7Xsvc67Pl71OXejnvy9zpm/eSUuSRo4u3zml1cBbm6nnb+d7PwLW52kpU1Opb5vSt+QanU7plfteda0PfPojaZtYVv6nlhb8F6ftm3iyfQ+vfdytyqZ8ydrvvucl6h5PvwFDABAAQRgAAAKIAADAFAAARgAgAIuKTUmhPCspBlJPUndGOO+C/WPFbtwv5LtsWpOopG3lVeePOUlb+XbBUpSK6vGlSdlSdL8Fqe60VnbcS5LgApOosiZ6+24NjyV9jt1ix1D5Zo503bV5tOm7eTdu5Pj3qB9zEPH7LiqWYGlfPs0yT5/kv/89LM8GvO8rl8hLClIMdtusNJJH1tvwNkCb94mh3hVbfLt87yEKG87vbySkHdN2qNO5aYVXLuJ+0+ZtkNv2WzHtZC+Bcx+ky1rNvxFm4ATq2OmbcOD08lx+7pxZ2R2/uQVh0wilfztHKtte027w9n1yt4DvPeNNRGcSkrZtPAS+rwKdV6SY76ta2PGvla9bQVbG9PrOLPL2UKwa5Pg+jb/U/M7su1LR+zgb3jFYdP2LVsfS4531O172PePPm/ajuz4hGm744m/lxxfNWrP9Rf77ZtptZk+7tEjzpu+o9p2MuKyKZ1vLXuhObcauanfHGM8sQrnAQDgZYOvoAEAKOBSA3CU9GchhHtDCHd4HUIId4QQ9ocQ9neb9itUYC0snXftDvMOa2/pnOu0mXNY3qV+Bf0NMcbDIYStkj4VQng0xvi5pR1ijHdKulOShrbtic2N2XrPbFaYw26CoZ6zK4Un/5F0fc75cbqzM1B9Ba+V5qRtm/3eGdPWbqdrC/2vddZRD46atso7jyfH8ZRdP7tp+zF7O6ciyde8MV1jufvh60yfVtdeh6Gp9Li5wX4+83Zw8dao8gIhA2fSG66kcMSlWDrvRif3xPmt6SJWvguMNx6zRiup4hTZyNd4Gqds5ZP2pF1Ey9f7WhucnIWz9v5OvdL22/FX6Xrfs99j13s7r7Tru+961ZeS4xMdOzc/2nqNaat+0T6eU7dvTI7HDjk7QE3a9cWRg+m4mtvsjkx5sQ7JX7fPC4nUTy8kx8HZEWq1LJ1zI5v3xHxnnnq2O5JXTMjjFdkI/eXzVpqb7LXO3yO913Nzk2277lueMW1Ts2keQLNjw8lTU3Ye3rQhfaP5k8O3mj433vgHpu1LC68ybb9+wweS49+ffp3pU5m087DSHU6OvQIbFafokFewY2A6vYjDU2kQu9B73SX9BRxjPLz4/8ck/ZEk++gBAIBx0QE4hDASQhh74b8lfbukB1drYAAAvJRdylfQ2yT9UTiX5l+T9F9jjP9jVUYFAMBL3EUH4Bjj05Ls4hAAAFjWuu5RU+lKQyfy5Je0j7cY7nF36mkt38dLzMp/MD90wv6A/dg32DF8++6nTdubJx5Ojt978BtNn0PO9iaVrG1kpGn6dJ2iHrdNHDJtH3rotcnxlp3Tpk/rwS2mLc+/8XaAcnemcpo6I9nOL91CBRF0rujG8LE0MaKX7YYUa06BkQWn0MOQU7BjIb1OnQ02Qanu7G6VF5cYfd7en5f0cc0fnTVtqqT9Nj9or++r3/aIbRs6kBz/efuV9txz9m1ifrs9/zX/LS0HcOJrbTbP2EGbZTlzzUhyPHjSZr94yVv1Wae4yVB6Hfr1NKErPrk+v7wMvWgSD/PXSXfQKYbjFHrwUnjynd7aY97ObPaWC1uz6+PUeWnuttf/4Qevsh2zt4cdn7dzorLTjuvh30qTrnrb7evl397/90zbo/9yxLT96S6bwJUbeGDYtOWJbfVZ+17n7iaVP6eSOvlrNDu8UEzjd8AAABRAAAYAoAACMAAABRCAAQAoYH2TsHpRg6fTRez22PI7yXg78HiVX3IrSbiS7E4ip15hEz4mttndZV43ZqvDfOR4mgB1asEmAPQeslWunt+cJhgMH7RPzZ7veda0ffDzX2/aRnanFbqad9mEqwFnV6jx59IEmdldzhYoDi/JIL+m3s4v66YfVZ3NkrA2DibHeQUlSeo37APzdkOK2aWszzm70DhViRpn0n71k7ZS1chhW/2s9Zpr7Lny2/6j46bPRN2ev599Bj80P2H6bLzK7jCz/RdsdaHTX7cjOR52khm9ubLh0TPJcWubTbbJE90kqeo8Z6F54fJSXlWptVDpSY0s8a4zmlXGWmHij1sJK59zzm5I81vtuUaeT/stbLJ9tn/WZmZNvcGO4RW/mibddbc4O2T9hd3VKG5LywpOfPkx06c3Z8sT3vxvbCLY3J3pWA88us30GXQSzSaeSN8Pus6uY7W8cpmk6OzWN3gyfZ7NjlwXwF/AAAAUQAAGAKAAAjAAAAWs6xpwvxrU3Jh+P55/p+6t23rrwt538ZVO2s9bJx5/zha4OHlzuh7Y2uSsQ5+xa7m/+NC3mrZWM13rqz0zaPo0ZuzYJx9OPwudeI0dw6fufrVp2/NJb507XYsJ0a7F9Zz1zbNXp2u+XlEAby03Osu7+fPTzgpzeAUA1ky1ou74QNqWFQKpztviA16xkNCzA+9k60etCbvem89NSQrZvO6NDpg+3ddea9oaf/GAaXv8vbckx+/cZsuyH1jYaNr+5Nl0h5kd47bIR7Vixz69b7tp2/DgdHLcnbBzv7XZ5hUsbN2QHOe7y5zPwhZ7rnytOJ+vfafgylqIFbvmm+efVFvOurbT5u3Kle821nJ2LnMLu2QFO4aP2z5esYlX/KzNd+ldvys5nt1tn++BUbtuO/zVg8lxvGqn6aMNdkcsPTtlmhZ+L319DFxjX7Njzzk7nWUFdSotJ8Y473W9Aef9r1LN+mRFfi5QdIi/gAEAKIAADABAAQRgAAAKIAADAFDAsklYIYT3SfpuScdijK9abJuU9CFJeyU9K+ntMUb7a/1MrEmtjWnMr2cFIbwdjHoNJxnGSbCKK0jsaY87u6pkv/nujNmTV47ZhI/JV02btuYn0h+Ce4v2G5+0O8I8831pv8Zx+9TccMth03boiE1yqC2kx7v+1CYvnH6tLc4xdihNRJrZZa9V9GaM81zkSVZ54Y/KyvJsVkW/FrSwOX0sjbPpADpj9rHK2/nJ0c124Bk6ZhO68gQ3yRbsqM7aZLnB4zOmbfajNmnlvde/f9lxvr/5BtO2YShNSnzs8V2mj6o2QWW7l4w3lF7Dass+yYPHbAGP0el0ws68wiaLDZyy19Tb7SdPdqv08t3XVlDBZxX0a0ELm9IXQSMrvOEl57jvdc7jzPvlhW8kf4ekxtm03+kb7Qs636FOkp75d9fZxiw5r3rWjn38Kfu6OnVzeq6t9y6YPge+wyZ01ebsGOZvTOfT5r+0rzMvLtTm0rnZ3ORcB+c9qu8k/+bPRZ7EdqHiLyv5C/h3JL0la3uPpLtijDdIumvxGAAArNCyATjG+DlJeR3Gt0p64SP3+yW9bXWHBQDAS9vFrgFvizEeWfzvo5JsAc5FIYQ7Qgj7Qwj7uwu2viewFpbOu05rtvRw8DKQvNc1ea/D8i45CSvGGCWd90vuGOOdMcZ9McZ9tSFbZB1YC0vnXX1gtPRw8DKQvNcN8l6H5V1sJaypEMKOGOOREMIOSXbLFke1FTX+XLrC35zIVsidvJeaU6XEq8jUzRKevMX3wdP2XKdvTo/jiF1933aj3Q1p+rO2GtBQtuAe8q1yJB1/tU0UuOk30h1hHvvHThWhnn26Nn7TUdM2+r+nVbt6k/bNwKt2c/rGdFzDx2xiR3PCqUDm5bVk3fKkLK961lqptPsaPZgmevSG8ipFzi40TsJOb9CpSpRVDJvfZhNPRo7azJb8PisHjpg+j/6i3fnoszf/imnbkFXj+eS8nZtTC3a3mrN/mu5gNPiNNukr5FvvSJr6Dlu1a+P+9K+++es3mT5edaGTr0rn69ghe606Y3bue8kt7ZH0OuQ72lyoKtFqqrSjxg5kO3Blc8ebS94OSZ1R289U+HJ2eRtydqOa35pex8ZZew0Pfbtt27xn2rRdvSF9T3zwyA7T5/SYrWi15Uvpc3ToH9txdg/ZMYy82r4Hj38wTdjzqiZ6Zndn73VTNsnPS8zykt3y3fpezBy72L+APyrpXYv//S5Jf3yR5wEA4GVp2QAcQviApL+SdFMI4VAI4Ycl/bykbwshPCHpWxePAQDACi37FXSM8Z3n+ac3r/JYAAB42aASFgAABazrdoQxBDd5KunjbQHnJFt41WHq2Vq+d1/zW+xD7kymCUnff/u9ps89J642bZPfbJNmpr6cJr/U57ztsexC/jPfO54cX7vHVr36ias/bdr+yWfsFxTXj2QXwrlWC06CwciR9Dp4lXS8KjleVbJKntMQLni47uIKqlxV2itMwsq2kGtMr6za0sDBtHjcie++yfR58833m7bNFZvE18q2nNxVs4XpnpzabNq6N6bPef1xmzE+8Mpp07b1U06VtJE0cbDSsdehNeokEj5hq2PlvApEFWdeD06lyXbd0fRaOflkayZmU6WfVUxyKySt8E+ivKqWx9vGcPT59IX5zDvs7fbsOmna/rer/9K0fXUurcL3WH2r6dOdsZmwJ2/LHvdBmyR61a32vfXo522Vtspweq4Nz9gqg+1x571uupv1sePMt3yU/MqGjZksoTW/2QXmHH8BAwBQAAEYAIACCMAAABSwvmvAFakznH6H3suWs+rzznqv8x16z9k1aSDb6aPnbHBTa9m1k/pEuiPMVQP2B99vuOYJ0zbXt8UImleld/p//enbTJ8Y7Oee9o507eJH9tg1l3qwC7DVM86PxQ+kdVFmX2krhXpFShY2ZTtVOc9FZ8RZi3Oen/z8vaxQwHoW4lAlmMIb+fqcN55+wz5P3tpxezztV3NuN/bQCXu73RPJ8fGvs8VR/vWOT5q2erDFDeohveBHuxOmz/Xb7BgWNmW7RDlbwOwds2uCX9x1ux1DVujDW+P01tBaG9MxDB6363jdDc5uNW1vfg6btqXy533NVKTeYPqcmPwW73XjjM/Lu+hnl6PasScbPmx3GZr62vQ5Gpu0uQL/7Fo753bVpm1bPb3tZw7fYPrMDdv324Fj6XWZeL3drW3PqB3Xszvs+9iOv0rPn+96Jkn1OW+nqHQM1aa9fs1J+yZZc/rla+15UZTo5C+8gL+AAQAogAAMAEABBGAAAAogAAMAUMC6JmH169LcjjTmDx3Pdw+yt8sTeCR/14u5bdm5Tzo7fXyLPdfIQJrlMFa1yQs31e2GTzc3bMLHoW669+ypt3zK9Pm9J19n2t5+9SPJ8WTV7mE707fJN9f9od139NibdibHQ6dsYk2eDCdJ4wfS6zCz20tCME1+AlOWeJAnL3jFO9ZKvxY0vzXN9hs5mhZ/6K8wO8dLLMqTZBpnbNbMmdu2mLbh59OLWRm3O7J8qWmLD7x99Ixpm+2n55qo2nnxyDM7TdvX3fR0cnzPPTeaPk9stAUWvM32jr4+vYY7/9LOu/mt9jpv/1I61rnddp7nuxpJcqu51OfSa19ppWMIK9wt51L16kFz29LXz2i2I5ZXdMhLUqs4CVad4fTc9eN2zp29zj5LefGSayZtYl4n2rDw2gFb/OVIN52Hf/ea+0yf35h6k2kb/Jr0dqfO2nE+7rypTN5n348OfHs6n3Z8wYkL2+3txp9NE/3mdtrH5xbisN1Mv0a205xXNOoF/AUMAEABBGAAAAogAAMAUAABGACAApZNwgohvE/Sd0s6FmN81WLbz0n6EUnHF7v9TIzx48udq9KRRg+nyRT5jkVtp9KSV5Gp13D6ZXlLXSehYfh5+5lj16vSpAAvAWpT1RlDtIkhE5X0kt57xu6i9K7r7zZt1w8cTY5HKnaHmP9++rWmbfoGm8Cw6cF0/P2afczeTinT16VjHzppH193yF7TqpOYZZMVsuow6/jRr9KNGj6WJl3kFa28nbNq8zaJyKtq4yUE5oaP2Ofz1C1pslHs2T5ecti9LVspajDLXnzPI99n+oxunDdtT/52ugPT1QdsIlhnxFYXev4b7dwYOpaO9cSt9u1l4JS9VmeuS5MZh52Eos6ovQ71GWd+ZtWnqpV83q1PCbZqJ2pkys6fdCy2zUu46jo7cA2fSK9RZ8TZ+eigfWHO7Uiv9Uxn0PTZ5Lz/HenatvzRfeLIK02fV95wyLQ9fzbd+e2m7TbB9YEnd5u2+l7TpE1fTZ/P2V32Oow/Z+fT3I70DWrgrH2uek5Fu0EvodVc+/T4Qu91K3kb/B1Jb3HafznGeNvi/5YNvgAA4H9aNgDHGD8nyRZHBgAAF+1Svgh8dwjh/hDC+0IIG8/XKYRwRwhhfwhhf7dpf5sIrIWl867dZt5h7S2dcx3mHFbgYgtx/Lqkf6dz+3n8O0m/KOmHvI4xxjsl3SlJoxt3x/pCum7TGk/XbBpzzlqrU4jD2/3DFnuwfaZH7Y+yO/207bHWDtPn02dvMW3/dMtnTduPPPGO5PjJB+xaxv7OTabtj//OLyXHTWe7op/Y8mnT9mOnX23azlyfrgtv/Kr9AqNzky0iMnwsfW68tQtnQyZ3Z6V83T5fJ13rQhxL59346K5YXUgH3s3WNattO6B+3bkAzpzK51m1ZdeJmlvsL/jzazT4pF2P+7dPvNO0bf7GI6Zt/sPbk+PWJvua2fkfv2ja5r7v65LjinMdTn+NU6TA2YmoPZ62bb3XnsstinAgLXzTHrdrzl4hDq9oT3UhK4IQ80I/a1eIY+mcGxvfHfMcgna2o5M35zzeDm6dkfQ6ejkG3nr3xBPp6+DJx+x73W8Mvsm0/cSOPzdt//fBv50cz7TsPHnuaVvE5cYbnk+Oz7bsvN++0+6G1LzP7oY0szc93vSQfe3N7rBzbuKpNI+iOemEQmeudIecXARnt6WlvHn6gov6CzjGOBVj7MUY+5J+S5It7QQAAM7rogJwCGHpx6bvkfTg6gwHAICXh5X8DOkDkt4kaXMI4ZCkn5X0phDCbTr3FfSzkn507YYIAMBLz7IBOMZoF6Gk967BWAAAeNlY192QYjWYpKs80ac+axe0K05BjdYG++35wOl0Ab7r/Dh9xxdtFtGhGyaS4/9v1i5pzx4cN22P/+erTFu1kSaQXLvZJkc8/dYB0/aX89cnx9879rjp03SSAo58g00wuPpjaVLLwlUbTB8vCaozmu1gtOAlHNnbeUlYeWGL/Hn2dlBaK7Ea1BlPE0TyH9kPnLbFLXoD9oG5iVnZZfJuN/LMjGnr3pw+L7s+Z3fhqp+wxTP0Qds0MjKdHB/+VvvDhIW32nmdJ1M9/wabENN6hR1Xv+08xsfTa9yc8AoZ2Am0sDm9nZfU0h225+o7u8zU+nmyXzYPw/pMvFiVOvl7XXbJvLH0nYRTb9enfIcdd5eueVtUpb0nfe/Z+iV78rtr15m2+z/+CtO2sCt9L63N2DlRadhxPf50mvi1eYfd3WvH2FnTdnTWnmviyfQxeoVyBqdt2+yudM41nLiTv64lPzE1L2qUPxcXeq+jFCUAAAUQgAEAKIAADABAAQRgAAAKWOckLKk9nq5I17OFdS/ZomcL46hi8wvUGUuTALzqOcdfY0/WPpWO6TW3HjZ9jrzfJmGdud1Wedlw31Ry3HjK7iKy+zO7TFvzO9JxeZ+MtlVt8ta3vvmvTdtnFr4mOd7xBZsI5iUYDJ1Ir1fb2YHGTwixbbXWhSsOXag6zGrr14IWNqVTfeBMOujOmJ0XbvKEl4OVJX54CTHH902Yto1PprvVBG9Xpbad6Cf/1nbTdvx1+Vy3T0rdSZI5tS9NpBncaJPF3nnDV0zbf3v8NtM2f3M6/qG/sJWRvCS+gdN5lTInmcepfOepZMlJlWZWGct5btZCrAUtTKaPY/B0+uB7TnKp97rIE64kWwmw7+zc09xid0obeT5NNjz8TTbpbsdd9vpPfb194jbvT/vl7+2S3BfR3Nel837+C5tNnycatm37lH0tNLPXdcPZIct7zodOpvNiwamEVWs6CcHOe119Lm3ME1BXvRIWAAC4NARgAAAKIAADAFAAARgAgALWNQmr0o4aO5gmXOSVX7wttCrOFng9m99hkq7mnG2oGrbAil5/+8PpeZyV9gf+nq1ItOv/tYk7oZMllByyCV1TP3K1aTvRGUuON1dtAkUv2qSA1489adq+fPj25Pj0jTZ5a/iEPdf0dVnSyEmbPdAZs89Pbd726/bzRISVV4dZbdVWX+NPpfuz5pWx5M07J/klr3ojSfWz6XM+v91OztGjdhKfvCVNgKnYYlw69U773O28fsq0/eM99yXH//3wbXYMr7LJeKcPpFWJ/tWtnzB9ttZsYtZVt540bb9259uS41hzqjM5iWbNzenraPSAfa21N9hr6iVmdUbSt7R63sV5ntdCtRW14en0erc2po/TS86pONs89gbtmDtZlT9vm7zho/b5nrk6nXO7/8JWOZvdZefcdR+2/Zpb037Dx0wXnbnWhpiNfz6UHE/faB/z4AmnSljNto0/nc6Vs9fabVa97WwXJtPrNXTSqb7mXPfQdOacs8XtUheqvsZfwAAAFEAABgCgAAIwAAAFrGQ/4D2SflfSNp0r33BnjPFXQgiTkj4kaa/O7Qn89hjj6WXvMfs6PF8L9H503nd+sO6tzy13bkma/hq70DZSS9dKbhl+3vS569nb7N31m6Ytzqdt1ZuuN336A3bsPzb5V1nLqOnj+fVn3mja5namD3zTQ3ZNe36r/ey16ZH0h+6z2+308IpueEU9TCGObA14PQtxKEaFXrrGk69FerucRGfNydttJZ+Lw1N2js3sdtbhj2U5C9ucAhRNe383TBw3bUfaE8nxTRN2ndjz/a+7Nzm+rmEX8o52J0zbf3n6Daatfja9Dpvvt0VoZq6xuQ3jj04nx82dY6ZPtelMPOf13ZhOr70pwrBOhTjO3fky/+yMJTrvyN66eV7QpOoUjfCKywwdS1/j3SF7hxses2v+p2+xhYjGD6TvdT1np7DBk7Ytf+1vfNReqLy4hSQNnLRr2q2N6euq13DWjp0l2tEjWSEeZ+e8qlPsyXvfyq/9SnaqesFK/gLuSvrpGOMtkl4v6cdDCLdIeo+ku2KMN0i6a/EYAACswLIBOMZ4JMZ43+J/z0h6RNIuSW+V9P7Fbu+X9LY1GiMAAC85L2oNOISwV9Ltku6WtC3GeGTxn47q3FfU3m3uCCHsDyHs77bmvC7Aqls67zpdZ1N7YJUtnXPtNu91WN6KA3AIYVTSH0r6qRhj8mvaGGOUuxIoxRjvjDHuizHuqw3Y9R9gLSydd/Wa/W0gsNqWzrlGg/c6LG9FhThCCHWdC76/H2P8yGLzVAhhR4zxSAhhhyTnZ9ipWA1qTlz4R8tekk++84fkL7a3x7LPE16SxlGbmPDAVTuT4y8cucb0GbzOVvA4s9cmJlT2XJccz+20n3Gufd1zpi1/iLNOgtdzTjLGmbkh07Ztf5o9cPpGJxnjuE3aaG3IdpPydjRyrqnXrzOc7xCUF1yx51kzlaDeUHoNvB/1m5t17DXybtcbSK+bl3SRJ6xItjDDlr+2fzUtbLNv5Cdbtu2qoVPJcT3YpK8TbXu7xxfSnZW+cOYG0+eJM1tM29wXbNv2Z9Ikmbk99oOPt0NZfzgtslFt2TcBr0BPb9BJ8Ml2BcqTZrwkurUQK1J3uGralvIKr7jJgM5j7wzlryd7w8a0Lf7SzxKlhg/Y97V+w4aFya/a/NqFXWmy3Pw2e7v6nLM7UfactJ3iPjE4F2KPfa/LCzJ5OzLlO+5JtshG1SmAkl/j8/XL51S/sfL3umXfBkMIQdJ7JT0SY/ylJf/0UUnvWvzvd0n64+XOBQAAzlnJX8BvkPQDkh4IIXxlse1nJP28pA+HEH5Y0nOS3r4mIwQA4CVo2QAcY/y8zv+Ltjev7nAAAHh5oBIWAAAFrOtuSP26tLA1/WN6aGr5ikStDfYP8MbZ5RfWh5wdf+a32ySw5x5NE1Fqc3YQIwfsGE58rU0WCd1scX+7rQZ0pjVo2g720spXH5u1OyZ97Oitpm3iv9mKWcdfk45/YNpeq7kd9jGOP5c+nta47VNxqsN4iUnVLDErT17IK/mspX69orld6TUfOp4+EC/hqrXJJq95u9V0RtPrNHjSXqT5bTYpqtpK73N+l50Xkw/bcT08ste0Pfv8tcnx3G57u+Ej9vn8ctYvTNpqQ2P32OSX3V+y1ZKmvi5NytnwjE0Cyq+VJDWms519hu1rNDgJiN73ctV2VvEsq6DlVdpbC716MJXkhk+mY4lOPmqvcZF/EzkPa2aPs4NU9pY1v3XS9Bk4a+eOl/SaJxt6CVDzTnW3zlh6u9qcvZ33ntVz3nvy96jR5+17cnOjs4NZlhyWJ6BKUt3Z5c17fvKqXfl7xIXe6/gLGACAAgjAAAAUQAAGAKCAdV0DrnSk4SPp9+P9bJktXzuUpNoZe66us0NSYzb9sj1fE5akrffZdam8OEhz0t5uYbuzyDJuFyVes/dgctx3FrUbVTuGH7vv76cNX7VFPqq2loNqdglHE08tfx2GTtqFibyQScP5Abv3o3l/reTCBQ+8narWSuhGs+bbz9Zy+nVnHbvp7UJj2+oz6RqQt4Y5dMxWXcj71Wft+pW35rTnz02TFjanx7UFZ9cmZ/168wPZumTFviV0h53dtHbbIhuTj6WPsTfg7I5zwr5m2hPpWmVjxvZpTdj1+IFp2687mF37/CE7RS3WQqUbNXwivW75HPPWBr01am8Hnrw4h7ebT77eK0m9LBXh9M3O7nMjdmCDk/bNZ9uGNA+gO2sLvczP2NyHxnO2zYzBySvpO9FqZCq7xs7tBk8tX3Qojx2Sf01rC7ZfdyjtV+ksn9f0N33P/08AAGCtEIABACiAAAwAQAEEYAAACljXJKzQixrIE1ayHU3cXSmGnQQZZ4ek5uTyBSi85KBeVv9g9IhdaN/8oE34OH3EJhM88WC6m8zCFjuGgVNeAlnWxxl719lVb+yATeia3ZU+rV6SlJeYlffruruB2DH0nASmurPrzVJeYslaCb2o+kyWIDScTX0n+cX0kV8QojeSJXQ4yUGdUedc2SVyizA4TV2nX/68DDu7XY0csPsi9wfScYWevV215exyM22TchZ2pkk4jbP2OvTqXiGOdPDdEedaOQlFJuFKUi0rvGGe17g+Ey/0bcJOv50nYTlJjuP2MXnJc3kVEm/XIS+xsJ/t3NM4a5+PbsfertmwRT2eO5XuiFUbs8935bi93fCR9HjgjB27l7jkzQHzfu7k2AXnPauSvY57TlJvnkwl+btp1bJrnz+vFOIAAOAyQwAGAKAAAjAAAAUQgAEAKGDZJKwQwh5Jvytpm87VlbkzxvgrIYSfk/Qjko4vdv2ZGOPHL3SuWAnqZFVD8h00avPOInfTqdrk7KpSn8uSiJxEo5rd7MVUmBp72u5gVD162rRt/8qCaZv+thuT48a0U1Vri2nS+ME0marlJmPY283utk/hyNGV7Gq0fLKblzzgVaNxK2aNXji5bj0rYaliE6qak2lySH3GJrNVWzbrw0umyhNGVrqLUn477zkJTmU4L8lrfvvy1YUWdtpdjfIqXqFvnxgv8aS53WYEDh1NXw/tjXZMXqWn/kA61/MEGUmKFadC3ryz883mxgX75BWk1kywSXXd4QtXTJL85FKvopipBOglEXk7SGU2PLGynY/0mE2myqtqdcbsvO/ZJg0fyxJxnWTP/L383P15uyYtXwmr7zyeSvZyD05yXp6wJvnPWS+LaXkS1oUqYa0kC7or6adjjPeFEMYk3RtC+NTiv/1yjPEXVnAOAACwxLIBOMZ4RNKRxf+eCSE8ImnXWg8MAICXshe1BhxC2Cvpdkl3Lza9O4RwfwjhfSGEjee5zR0hhP0hhP3d5tyljRZYoaXzrt1h3mHtLZ1znTZzDstbcQAOIYxK+kNJPxVjPCvp1yVdJ+k2nfsL+Re928UY74wx7osx7qsN2t0ygLWwdN416sw7rL2lc67eYM5heSuqhBVCqOtc8P39GONHJCnGOLXk339L0seWO0+s2ESfgTPpgrW3yO0lXOWL6JKtlFJ1Ks3MbXeqCGWJLrNX2xdPdYdNOvEq2QxPpZlSC5sHTZ9Nj9jkkdM3pE/F8FGn0tdmJwnhlJNMlW2j5SXReKWo8sQHLxnDS+zo23wx1bKt/PLjC1WHWW2xEtTJkrAGTqeJTNV5p3rVhE0iqrTswGtOpbGcV7Up5yWm1ZxEsN6APVfjTJbEt9G+tKvOlmvdoSwBquNUJXLmj1eVqL3BJuqYc60gByrW7Gs0Osk1Xlu+RWEtq4AWuusz8WIlmOSi/DnyqsF5CVf1OXuxK53lE7rcSnbZNM/HJPnJba1Jm02Vb585fZ19/scO2vMvbEnnprcVYL41qiSNPG+zUDvj6bm8qnwVJ/FvJQlq3u3M9paSqlmScDV7j/BeK39zH8sNIoQQJL1X0iMxxl9a0r5jSbfvkfTgcucCAADnrOQv4DdI+gFJD4QQvrLY9jOS3hlCuE3nPhM8K+lH12B8AAC8JK0kC/rzcktc64K/+QUAAOe3rrshVXrSwNkLr8F4O3g0nJ0+2iPOOlG2NOb96H7soLO+sWH5NdP8R+eS1HfWqvI1wg3P2LXF5ka7hrfp4bRfZ9iee8MzdgxesZF8fdUrfuDJ14zytXHJXxduLCz/Y/58HT9/rtZS6EfVZ7P1t2zXn96IXeOqzdn1q56zlpvPM2/+DJy0uwd1xvOiEfb++g17f16BkHxcQyfsvPMKCwycTSvTtCfsOl5tYWXr0NVsJyJ3VyOvEEaWS5GfR5J6g/ZclbazA1BW/KKzIX3hxur6FP8L/ejuULSUt97r7rY15OWtpOf23i8aZ+117GY7d+XnOdfH2f1q5gILmYtGppznzRn76KF0LdfLVxg8tfwcl+w6dHCugxcH8teCV+zJvabOa6Gf7fDVztal3RycRZSiBACgAAIwAAAFEIABACiAAAwAQAEhOrtArNmdhXBc0nOSNks6sW53vLoY++q4Osbo7Au1+ph3xV1OY1+XececK+5yGvt559y6BuC/udMQ9scY9637Ha8Cxn7lupIfP2O/Ml3Jj52xrz2+ggYAoAACMAAABZQKwHcWut/VwNivXFfy42fsV6Yr+bEz9jVWZA0YAICXO76CBgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQQK30AADgpWbz5s1x7969pYeBy8C99957Isa4xfs3AjAArLK9e/dq//79pYeBy0AI4bnz/RtfQQMAUAABGACAAgjAALAKQgh3hBD2hxD2Hz9+vPRwcAUgAAPAKogx3hlj3Bdj3Ldli5tzAyQIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAArIIQwh0hhP0hhP3Hjx8vPRxcAQjAALAKYox3xhj3xRj3bdmypfRwcAUgAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAZcUgEMIbwkhPBZCeDKE8J7VGhQAAC91tYu9YQihKunXJH2bpEOS7gkhfDTG+PD5blNvjMTBwY1p40o+AvSdpnowbZVuTI5j1fYJ/Wja+lm/YLuo0raDiDV7fjm3vag+3qmdx1Np9ZxxpRc1utfYuYO8h3OtVnpNQ365sj7N1rTanbnlB7EK6gMjcWB4MmnLr4n3nHv6ddtW6aTH0XlUKzm/9zxV2s58bdg7yO/TvT+nLe/njd1TdV4P/Xo277xzeW3ZGCq95V+j52Numx02F06r016feQcs56IDsKTXSXoyxvi0JIUQPijprZLOG4AHBzfqta9/d9LWH8jedZw3iWrTvtjndtp3wsGTaTDqjth3tGrT3kF7PO1X6doxjB6YN22tTQOmLWTx0HsT8t688sfdy6+LpO6wbRt9eta0tbcMLXu7WFn+w0Nt3gb31oSdMo1Z2y+/bXUhvah33/8b9v7XyMDwpF7zLT+ZtHVG0sdfbdvbec/dwhZ7LYePpc9nzwnS1Y5tyz+4tEftuccO2IHNXNUwbf3qCu7PCWx5v/w8khSdtrFnm6ZtbtdgejvnA0VvwF7UavYhozFjXx+tDfZk+WtNkgbOpo0h+1B+3xf/H3sjoJBL+Qp6l6SDS44PLbYlltZH7XTmLuHugJVL5l3LfkgBgNLWPAlraX3Uen1kre8OkJTNu4HR0sMBAONSvoI+LGnPkuPdi23nFyRlX312h9LPAPVZb23Jfm01eMp+/5Svjblf/zbt7SrZV7S1eTuG9gb7td/Acfs1XGtT+jVczbm/7qD9Tq+2kPbrDdrPRjXvq/hrbHAZPJ5+bZlfY8n/Wj9fn/PGUHeuTXXBOVemO5J+L+t+Bb6W8seWzZU8f+B8GmecdfHs3N7Xv0PH7VfJ7Q3py88bQ9v5yn/8uZZpm9uezs++k59Qcb6yrXTS+8yviyRVW3ZcZ64fMm3DU+kyw8Lmlb29dLOvpSsdO4bagh1DzZl3+XuFmcGs/uIycil/Ad8j6YYQwjUhhIakd0j66OoMCwCAl7aL/gs4xtgNIbxb0iclVSW9L8b40KqNDACAl7BL+QpaMcaPS/r4Ko0FAICXjUsKwC9WrAR1RtP1z3x9yVvv9dag8p8XvHD+pQZP2d8Tze2wvxEZPpb2c9dM5+x6U3ObXQfLx99zzpWvu0nS7K50Da/urHnNb7FPl/m9raRYaSzbp+esweY/HQpOH++6e78Dzn+fXDubrpdXOs6C5BqJFakznD4Ws6boLAF7P78J0fsZW3ruxlnn+d1pcwiGp9LF4oVJe4ejh5yfIe2xP38zv3/1fmXmLDgtbE4bR47Y52V2px1Xfd4+xuamtJ/3e96u8/puzKb9vNff0An7Wvbmda5+Nr2d91MsoBRKUQIAUAABGACAAgjAAAAUQAAGAKCAdU3CCr2oxnSaFNGaTIfg1WrOC/lLUm/IJobkyU3tcfvwxg7aIgatjVmRiGATRfI+ktQ4YxNDmpvSfl6xgLmtztizU01f5yRvOfWKR47a8+fXON+cQZJC16m3O5mOffCkrSjR2mivaV5ERJKaW9NEofpwerv+c06G0xoJ/ahGVuClNbb8/bubAjgFLup5EtGg7TPg1DfOi2yMP2uf4M6Yvd7Dx+zzYpILnZfRwiY7D0aOps+dl3A1MmWf37nttt+Gp9LxT99gE89Gpux1mM8Twdz7s9ehPmcfZF7jO09G854/oBT+AgYAoAACMAAABRCAAQAogAAMAEAB65uE1Y+qNtMEodp8+hmg2lpBeRv51aTySj+DJ7wdaGwyVZ741R1ykmhOe4kvNskk302mPWKTVbrD9vzt8fS4ud3ZtantjGvaOVe2y463u1OsOxvLP59Wq2ptso/Pu+5d5zEOHkuT3XpD6zrVEiE6m7dnl63uVDrrjFzc59OBsyubw/nz0ty8skS/E7fa5yVml7c1YZ+nxlk7htPjefUqp88b7BiqR+xzPrczTbwbOexUc9tsr+n4gSwxc4M9d8NJYvN21Bo+llVzyyqXBQph4TLCX8AAABRAAAYAoAACMAAABVzSwlwI4VlJM5J6kroxxn2rMSgAAF7qViMz5ptjjCdW0jFWgnqD6V1Wsu3tvK3tvKo+fSdRqjuc/kHvbT02cNpJzJpIk1+aE04Vqq69VD1na7WFzWmbl/Qxv8MmlPSG07bqhB1nr2nHMLvbJuTs+FKa1NJxqj55yVS9wbRfbc5m5HgJV14yTHuyceE+6/jdS6wGm1CVPXwv8a7a9iph2fPniUu9ASc56Kh9Pk+9Ik1amrnGnrs3bK93ddO8aXvlriPJ8aNTW02fULPzrlZJ2xaaNhHsX7z6LtN2oLXJtH3wL78+Oe5ebx/zwEN2C8/89Tf+rB2nt02p976QX/tOdv2ohIXLCV9BAwBQwKUG4Cjpz0II94YQ7vA6hBDuCCHsDyHs73TmLvHugJVJ5l2TeQfg8nOpX0F/Q4zxcAhhq6RPhRAejTF+bmmHGOOdku6UpLHx3fwKD+ti6bwb3bSHeQfgsnNJATjGeHjx/4+FEP5I0uskfe58/fv1oLmd2Y47p9MFtFhx1hidjWvytWPJrs95a5Pz2wdMW14QITh1FNpj9suCk7fZMQweS+9z/mpbxCAM2bbJydn0/v5ys+nTGbX3t/U+WyBk6mvTx7jjCwumj1eQpDafjmth+6DpU206BRGqzvpptgtU/WxamCN0VlasYjX0atLctvT5G5hOr2XFXka18511JA2dtuNubsjO7RSNOPZaey27w+lx9ZoZ02fruP3r/Z9f92f2/N20ksto/UbT54v7bzJtw7vTeTfy+VHT58933Wzanjpl5+cPvekvkuMPP3276TO7zb7+Jh9Mr3PPTk3VF5zXu/O+kO8+NpQV41lpoR9gPVz0V9AhhJEQwtgL/y3p2yU9uFoDAwDgpexS/gLeJumPwrm9c2uS/muM8X+syqgAAHiJu+gAHGN8WtJrVnEsAAC8bPAzJAAACljXLWqq7b7GDrYu2Kfn7NITbM6S2hN26PmONr0h51xODsbClvRcI0dtRs6pV9iCF3s/Zh/L1L40yWTscTvO8W+3dUuef2pLctxwEq6u+oQtwNAZtxkr2+5JxzW7xya+TDx0xrQt7EoTcLxdlBY22cyXoZPLF+yIlXQMsbp+n/2qHWn0+TzZb/mCDF7iT77blSSNHEsn6PFX2+ekudVey1u/5pnkeNuQ3a7omzc8atqebtkiG1OdNAnrnk/bxKm6kwu+8wPp/GxPOLt+/biTEPhzdh589OCtyfGrtx4xfe55aMKeazS9pqOH7Qu+OWnvrz5vH1A7KzqTJwh6CYNAKfwFDABAAQRgAFgFS4u/HD9+vPRwcAUgAAPAKogx3hlj3Bdj3Ldly5blb4CXPQIwAAAFrGsSlvpR1bk0yaOzIU/OcZIkglNpqelklGTdGmdsQklzs02QacxmCTLO/W16yCZcPftd9lwhpud69dc+ZfrcMn7Unmv8VHL80H+9xfZ567Bpu+FOm+hy7I07kuOtnzls+vQ2jZm2kUfTr83mbraf4gdP2YQrbwerxtk0kaY3kCXRrGMuTOhGDZ5MxzO/LX3uvMpqboUvZ4ekbpbsV7OFxxS22vlTyTICbx89YPr83pHXm7abnfnz0U+k/YaP2rFv/bKttNUZT5MLBz5xj+kTbrzOtG344IRp6/1gmlz45c/aRDB3XPvTal/tCZvwWHMS4rrOrlMD09n85E8MXMaYngAAFEAABgCgAAIwAAAFrOsacKxV1J5Md4XpDqefAQaPp7uXnLuhXf/J166kc7stLdWatGu01ZY910L2I//67PKFJSRp81/bNaj4jnQdbPuQXXeb7ti13C98Nd29Ztgu0ap+1t5fe89G07bp/qygQ8cWNuhM2N155nePJMfezkctpwCKtwZcn0/H2skLc6xjQYRYC2pNpuOu5EuFTrGXgTO2cWHT8i+ZuT32uvVadv5886bHk+NTXbsT0XN/eo1tC7Zt5/1pvsP09Xbun77Fnn/zJ9Iche4bbjN9dNoWgPF2Ilr4s7RAyLBT9GbQ2U1q9uqhtMFJ7/AKoETnz4fuSNqYrxP3KcSBywh/AQMAUAABGACAAgjAAAAUQAAGAKCAZTNKQgjvk/Tdko7FGF+12DYp6UOS9kp6VtLbY4ynlztXvxY0vzW9y7ywQ2/QZne4CTtOYla+w42X0HXiNUOmbfNX08oJ1Vl7u4HHnzVtU//q1aat/fxEcjw7OWX6HFuwGVahl4598lGbCHbou2zb4WAfz8B02rbjU03Tp1+z13T0yXSHpLM3T5g+NScxK9hhqTafNlYX0tsFp/DFWunXpIVN6WfN+lx6/14SVmfUyTTy6sRkl6Rx2n6uHbnJ7nS0rT6dHD/btAUvejZXzk1SqnTSQTQ3OX2c/MZj353eZ3TeEfb98GOmbbJ7zLR94aEbkuNb/r0tGNLZNWna8iS+6RtGTJ+ObVLV2Vit0knP1cjmmZcwCJSykr+Af0fSW7K290i6K8Z4g6S7Fo8BAMAKLRuAY4yfk3Qqa36rpPcv/vf7Jb1tdYcFAMBL28WuAW+LMb5QhPiopG3n67h0i65ua+583YBVlcy7BeYdgMvPJSdhxRij3FWpv/n3v9miqzbgLOQAayCZd0PMOwCXn4uthDUVQtgRYzwSQtghyWZkOKrNniYenU3a+o000aU7bIdUm7MZMt0hmyDTG0g/T3RG7bm23Gf/Gor19HbBSbgKgwOm7eo/tRWCDn5H+mb/0P5Xmj6tCWdHmMNpEs3JV9rPRq+9ye6sdHT3uGmr/6c0A+fom7eaPoOn7GemmavSBJmxg/a6NyedxCTn41espde+Np/vOGVvs1aqrajxZ9NKUf1Gen3zKmqSM2ZJoW/7dQez6ksj9oLsGLNJWFfV0pWdwXG7e9e933iVvb/ftF84Hf6mdH72BuwYZveYJm1+IO33tf9yv+nzk5s/a9oO9mxVrSd+I939qLd1wvTp57tiSTp7VTr2urPzkZc0WO3YfnnFrDxBztvpDCjlYv8C/qikdy3+97sk/fHqDAcAgJeHZQNwCOEDkv5K0k0hhEMhhB+W9POSvi2E8ISkb108BgAAK7TsV9Axxnee55/evMpjAQDgZYNKWAAAFLCu2xEqBFOtKt9WsNq0ZZU6Y3ZrtejkAjXOprdtTNtSOf26vWHjybRaVXfBVo6qbbGlhWausVWoRg6liSFDp2wiz2D+q2pJZ69JxzX5DbaK0B07/sK0/dP7327a4u3p9fKqas3utNdh/Lk06cpLTGqctY/HTWDKtnSs9LKKROtZkCic25Jwqe5Q+tmz2nK2EBz0KrDZplpW5Wtoyr6sun37WfdjZ29Ljq8aOGn6HHjezrv4rXYQg5vTbS97U3bLy/qUM/d/5Pnk+G0T95k+19RtwtUn53aZtm72cqgcsFXg+rfaTLCBmfT65VsISnb7SMmvXpbPK5OERSEsXEb4CxgAgAIIwAAAFEAABgCggHVdA46VoO5ouuab704SnF2O8p1eJKnj/KB/4GxayCBW7eeL2lm7vjv/qp3J8XDN2ZGpbi/VxntPmLbZm7NiFvfbGiWnXr/dtI09lz7GirNIerxni278r9c8YNr+4PE3JMdHv95ehwFvHXpv+hg3PG0LQ8xvsdfBK5ygbK2/mxVJiev40S8Gu07dz57imp1iCj37uFob7NyoZDvueEVOnvjy1aatsy891/5gi25s3DRj2ro9O4Y9E9PJ8aMH7P21x53XVjbPdtbs/T1up4E+fvxW07b17nQ3rdPfcq3pU23bMXRG8vV4Z6czZzm+7717ZR372W5S6znvgOUwHQEAKIAADABAAQRgAAAKIAADAFDAuiZh9etB89vTIhGDJ9Nf03dG7JDy4h2SVHGSOWb3pLuqDJy2v94/e6tTPGMqzcCZft1O02fDX9tkqtlXTJq2POlq4VpbSKE+ZzN+zlybPu6Fe22i1r9+/PtNm5zdea7Zdzg5fvpxe67avL3OW/enhUuam20BlOETzs5Ug87nuCy5buB4eu7QXb+KCL1G0JkswWzkSPoceMk53o5bA9N2TvXzwhFOAp23i9Jz9+xOG5xL0t1li8n8i32fNG2fO31jclzp2Pvb+Tn73M3ckr5mPj13o+mzxUnMOvlre01bL9v4a+ikvVYzu+y8y4vVdEacAjDOa6Y17iRZNtN+tSyhK0/6BEriL2AAAAogAAMAUAABGACAAlayH/D7QgjHQggPLmn7uRDC4RDCVxb/951rO0wAAF5aVpKE9TuSflXS72btvxxj/IUXc2fVTtTI8+2krd9IPwN0hu1ngkrHS5ywiRp5BZ3Db3QSuvbYSlgLjTQ5peXsJDP1tgnTdsN/tMkpz7wzTeCqOlWEWl8za9qGv5DuOHPDnYdNn94Ru7vM4Z94rWk7ejRN7gm7bTJM/awd1+kb04ScDc84g3c+sjXO2OSeXpbAVO1kz4VT2WitVNvS+HPZ7kxZEli/5uzotODs/OTs1NPL5rC3m8+OLzg7Uu1Kr9HQCXt/02cGTdsvHP9fTNvoc+kYth+wz8nz32RfD71T6bybvMHOzX/zgL2/YSdRasvn0/nZ3jVh+mx83I7rRJYYOTLlJLo5O24NODtzNSfS6zB0Mu+zjhMPWMayfwHHGD8nySlcCAAALtalrAG/O4Rw/+JX1BvP1ymEcEcIYX8IYX+7PXcJdwes3NJ512nZv+oAoLSLDcC/Luk6SbdJOiLpF8/XMcZ4Z4xxX4xxX6MxcpF3B7w4S+ddfcBuKA8ApV1UIY4Y498s9oQQfkvSx1Zyu9Dtqz6drsHOXZ2+OVabzk4oth6Cu1NNvptPb8yuJb169/Om7e9s358cv7Jh+/zAV/6haZv7j3Y9ebB1Mjn+B9fdbfp86IBdtz21Lf1w0n32gOlT22ELauz+Tbsb0sEfT3eq2fpFu+41t8s0afh4er16Q/bzWbVp191i1Z5/6Mh8ctyeSNeXY1i/tbhKL2pgOl3PXsiKjDi1M9StO4+/bR9/O1sPHZixfbwCEBNPpPkQ1aZdHx04bV+iz3/DgGnbfH86F89ca/vUz9hr/va3pHP/UNsWjvnmq540bU88ZAt2dHZuSI5rs23Tp7XJrmmPH0wfd3vM+bvAeX46zvwcPJ1ee7u7GoU4cPm4qL+AQwg7lhx+j6QHz9cXAABYy/4FHEL4gKQ3SdocQjgk6WclvSmEcJvOfZx8VtKPrt0QAQB46Vk2AMcY3+k0v3cNxgIAwMsGlbAAYBUszbw/fvx46eHgCrC+uyE1KprfkyZd5TsdDUzbxI3ukB1m1ynYUZtPEyz2vcYmj3zvlvtM2xuHDibHTh6YXrn1qGnbPmirWfzQps8nx/1oE1+ObR83bZ9+ZEtyfPg9f8v0GZqyA/OKEdSyX3udepUdQ93WEFGvkfZrODsfyUme6o44WXJKk21MktM61kPo14IWtjTStmzI+a45klTpeoUe7GMdnM76OY+tPmevZZ6I1txqE6dq83YM1975lGmbe+1VyXF73A5i5BtsUDiwkP6CcHLM/lSw1bevv+ZWu6vY8MF0UnUmbR8vYS8vvlNxpp1X3KTuFErJr30vL+Cxhsl/McY7Jd0pSfv27SPbC8viL2AAAAogAAMAUAABGACAAgjAAAAUsL5JWLWghclsB5iTafWl7qBNconOxwSvslBrY5pgcXTOJjsNb2stO86nuxtM292PXmvafvWNv2faJrMMkoaT9PGpw68wbXPfk9Yrrn3Rjv2t/+Qzpu3Lp/eathsG0kSazz5iqxYNnHIqJS2k17Q5aafH4GlbXcyTJ9tU8gpa65ii0q9KrSwpqZ4l7HnjaW6wc9HcTlJ3KEskPGOv0cxue703PngmOT5+uy2pXj9r7+/wN9m52BlL+9Xm7O06C85zHtLn5UzPJk7tP7rHtFW322vTHU5fN8NT9rW2sNnOqbEDab/ZXQ3Tx0uS6zsJXXm+WGMun3fkRuHywV/AAAAUQAAGAKAAAjAAAAUQgAEAKGBdk7Cqzb42PpYmCHXG04SL0HUqEjlVhNobbaLGxBNp8svBa+3Wao/stPvwba+lyTB/eOpr7RgaNrHmIyf2mbZd2+5Kjj828xrTZ8uI3SD+9CNXJ8e/9I9sue23DNuklq+MfdW0fd8f/WRyXG/bZJXBE/Y6L2xMP49teNZWJeuM2uSbqleRKPtoV+ktt03c2qm2osazx5JX7+o6W9s1Zu3j6jkVmfJqS161rCGnqtip10wkx/UZe03O3GCatPHWE6bt1k1HkuPPPG4T727ZYithPT2TvkZGanaOzTfta639Bjs39n4wvQ6nXmG3Hhw6aa/piVvTfiNH7WvNu+55FT3JblNqErXWcRtMYDn8BQwAQAEEYAAACiAAAwBQwLJrwCGEPZJ+V9I2nStXcGeM8VdCCJOSPiRpr6RnJb09xnj6gieLUaGTre9kBTWqTbtW1nN2Q/LWimMl/Twx/JRdu3r8VdtM259N3ZwcD9U6po+O2yIGN942Zdrub6VrzJ1o1wOfO2ULLvzgd6RFNl7TOGn6zPft4/nLebvWV5tL17l2f9au183ssefa8FS6/tfaWDd9qnlBDTk7HUmqzqXPc2iXK8QhSVm9CbPzU9Ur9OC8OqptZ95ly4qm+IOkSsferpatnc9c5RShqdlzbRhsmraZbjo/b9xt52YlvwiS/u6u/cnxHzz/WtMnOE/w+P329TCzOysGMm+6mOsuSRufSF9vnVHn7wJnvlSc94B6tnuUWSemDgcuIyv5C7gr6adjjLdIer2kHw8h3CLpPZLuijHeIOmuxWMAALACywbgGOORGON9i/89I+kRSbskvVXS+xe7vV/S29ZojAAAvOS8qDXgEMJeSbdLulvSthjjC799OKpzX1F7t7kjhLA/hLC/03W+kwLWQDLvOnaTeQAobcUBOIQwKukPJf1UjPHs0n+LMUadZ3UlxnhnjHFfjHFfvTZ8SYMFViqZd/WR0sMBAGNFhThCCHWdC76/H2P8yGLzVAhhR4zxSAhhh6Rjy50n1ipqbUmDcL7TUWvQ2bHFKcTRG7SfHfKkjNFD9jPBl/741aZtYXuauLHhMXvu/mtsYtaOus05u23wUHL8wLzdSWbhyKhpe3j7juT4T+o2uerTp+wuSn/9mZvsuL6UXq9Tr7DXdGDaJuR0xtLp0DizsuueJ9JJUm+gcsHjfLektRRrQa2N6WPrZ8UzvN21vOQybwee/LF4feQ0zW9Lk67GnrN32Nx3xrS9euKwaXvj+KPJ8WCw8/Xp9lbTdqCVFuLo9e3z25qzCXsNZxqMTGU7mw3bTj2b12f7OdfdyR9Trens+JSdy9yO333gMrLsdAwhBEnvlfRIjPGXlvzTRyW9a/G/3yXpj1d/eAAAvDSt5C/gN0j6AUkPhBC+stj2M5J+XtKHQwg/LOk5SW9fkxECAPAStGwAjjF+Xu4XaJKkN6/ucAAAeHlgRQQAgALWdTek3kDQ9LVpFsaGZ9NkEadwlJqbbOZG46zdMaU9nt546KRNIlrYas+14/NZ8tZzM6ZPvz5m2u7bt9e0/fyDb0nH1LL3t/Mzpkl3d9Jkqv07bPJWeMpm8+79mP2JzdGvT5O8KnaDG3VG7JcaY4fS56I14WTMOKKTmDVwKj1XvkuNl/S0Vvo1aS5LeBrNdtzxKjTluxxJUtWpaJVXwsoTvCRp+jqbyJQnG81vs7ebOzBu2q690e5q9Hwnra7Wcz5b/5cn3mDa6rX0Opz5ymY7zm02oavvTI1TN6dvJyPP28wpbwejajMdQ3vMvgl4SVjedc4rYeUVyPJ5CJTEX8AAABRAAAYAoAACMAAABazrGnC1GTX5WLog2d6QDqE+a9d2++2VFW3I14XztTlJ2na3LYfZ2pyuz83vshW7Bk/ZtaN7ft7uHDOerSUOT9n1s/pZO4Ybfzvtt7DLrjmHaNe0Z/cMmbaJJ9N+eXECya6VSdJCdh2GjtldlDrjdsrUp+1j7Ayn/aqtbJeasH6FOCpdaeTYhdd8vZ113PVCZ9y1bCel7oDt465hZsvCc6+2uxxdvcPuinWiY+fGhmzroT87dovpM33Erifv+Ew6N3Y6xVf6dTt/zuw1TRo85TzIjLdTVGtDuuZbX7B92iPOHF5wCsBk68L5PFvPeQcsh7+AAQAogAAMAEABBGAAAAogAAMAUMC6JmFVun01Ti5krWkSkZc4FZwf7+e760hSv5b2GzxuK1B4O9zkBRGqHZsEMvq8TU45s9cWVxg+mSb7eMk9njiQVTZwPhpVnOSU8SdsIY7Za9IkHa9oibcb0dBUer26I870cB5OZ9T2q2ZjrTbT67eehThCL6qWJf90RpffgSfWVpZM1R1M+zVmvEQj+4TW5tM7Hbtv0PQ53d9l2n5v907TNjSVjqE+Yx/Q9Y/ZJK+QzfVK286VuT22AMymh+1rK389DDhj8OQJgV2nsItXwEPRnr8+myX7ZfM8OLcBSuEvYAAACiAAAwBQAAEYAIAClg3AIYQ9IYTPhBAeDiE8FEL4ycX2nwshHA4hfGXxf9+59sMFAOClYSVJWF1JPx1jvC+EMCbp3hDCpxb/7ZdjjL+w0juLtYo6G9NEk/lsd6Kh47aq0sCJPHFLam6zFaCq7TTBorl1wBmEbcoTpapNm0TjVUWaeNomoszuTBNRYsVuG9Pd4SRvHcset5Ps4yWedSZs4s7QVJps056w9+c9nl5Wvcrr4yVv1c/aBLXWZPq4Y57z5CXVrJFYCeoNpQNojafHXsJQ3ana5FUVC1neUsep2uQlb+VteQUzSeo7uzRt3W+TqRa2p/PAe+7O7LVzZfRwWu2s6VRWy587SerlSYOShk7lCVDO7ZzHk1en8hIXq/Ztwe2XJ9fl13g95x2wnGUDcIzxiKQji/89E0J4RJJNzQQAACv2otaAQwh7Jd0u6e7FpneHEO4PIbwvhLDxPLe5I4SwP4Swv922P5kB1sLSeddpzZYeDgAYKw7AIYRRSX8o6adijGcl/bqk6yTdpnN/If+id7sY450xxn0xxn2Nhv09IbAWls67+sBo6eEAgLGiABxCqOtc8P39GONHJCnGOBVj7MUY+5J+S9Lr1m6YAAC8tCy7BhxCCJLeK+mRGOMvLWnfsbg+LEnfI+nB5c7Vrwa1NqbJGyNH0iSQilOFytse0EumaGTJQJWWPVdzs00eUXaqXsN+LvHGtbDFnitPBOsMOxWnjttkm+Zktn1f29sKzzZ1avYprLSzRBQvmcqp8pRX2uqO2CyavNqYJPWd61WbSzOTGmfS59nd6m+NxIrUGcq2icwqluWJVJJN1JLObW2Yyys5edXWFjbZc1WzHL6es41hY8YObH6nTaYaOJUO7NQrbALi+AE7+Plt6Rzu153n10mmGjjrJKiNZFWnvMQz5zrnWxTmlcXO3c5LCLTnyp+fWjan13PeActZSRb0GyT9gKQHQghfWWz7GUnvDCHcpnN5xc9K+tE1GB8AXBFCCHdIukOSrrrqqsKjwZVgJVnQn5f7t5c+vvrDAYArU4zxTkl3StK+ffv4UxvLohIWAAAFrPtuSIPH21ljetiv288Eg8dswYvOBltcIt9JySsaMfa0/SlUa0u6plaftWtl3WG74DR4ylkQzIoK1I455xq05xp7dj45bm6x63yN6bZp647adeiQFSjwxl5t2sW47lDarzZv+7g7H63gXO2N6Zqktwa9VkI/mnXGkD0t0XklNGbtIqZXDCVf6/TWMEcPOcVKNqbXqOKsT/a9wifOunC1lbZtesQp1rHFvmZGjqYVLtrj9kJ4Owj1nLXiWjPt543dkxc38fIfvPXxilMopZut9eeFObz3BKAU/gIGAKAAAjAAAAUQgAEAKIAADABAASE6CRZrdmchHJf0nKTNkk6s2x2vLsa+Oq6OMW5Zjzti3hV3OY19Xebdvn374v79+9f6bnAFCCHcG2Pc5/3bumZBvzDxQwj7zzegyx1jv/Iw78q6kscOrCW+ggYAoAACMAAABZQKwHcWut/VwNivXFfy42fswEvMuiZhAcDLAUlYeMGFkrD4ChoAgAIIwAAAFLDuATiE8JYQwmMhhCdDCO9Z7/t/MUII7wshHAshPLikbTKE8KkQwhOL/7+x5BjPJ4SwJ4TwmRDCwyGEh0IIP7nYfkWMfzVdSXNOunLnHXMOeHHWNQCHEKqSfk3S35Z0i6R3hhBuWc8xvEi/I+ktWdt7JN0VY7xB0l2Lx5ejrqSfjjHeIun1kn588VpfKeNfFVfgnJOu3HnHnANehPX+C/h1kp6MMT4dY2xL+qCkt67zGFYsxvg5Saey5rdKev/if79f0tvWc0wrFWM8EmO8b/G/ZyQ9ImmXrpDxr6Iras5JV+68Y84BL856B+Bdkg4uOT602HYl2RZjPLL430clbSs5mJUIIeyVdLuku3UFjv8SvRTmnHSFPW8v8zkHrAhJWJcgnvsN12X9O64QwqikP5T0UzHGs0v/7UoYP6zL/XljzgErs94B+LCkPUuOdy+2XUmmQgg7JGnx/48VHs95hRDqOvdG+Psxxo8sNl8x418lL4U5J10hzxtzDli59Q7A90i6IYRwTQihIekdkj66zmO4VB+V9K7F/36XpD8uOJbzCiEESe+V9EiM8ZeW/NMVMf5V9FKYc9IV8Lwx54AXZ713Q+qGEN4t6ZOSqpLeF2N8aD3H8GKEED4g6U2SNocQDkn6WUk/L+nDIYQf1rkt7t5eboQX9AZJPyDpgRDCVxbbfkZXzvhXxZU256Qret4x54AXgVKUALDKKEWJF1CKEgCAywwBGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFEAABgCgAAIwAAAFEIABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAaAVRBCuCOEsD+EsP/48eOlh4MrAAEYAFZBjPHOGOO+GOO+LVu2lB4OrgAEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoAACMAAABRCAAQAogAAMAEABBGAAAAogAAMAUAABGACAAgjAAAAUQAAGAKAAAjAAAAUQgAEAKIAADABAAQRgAAAKIAADAFAAARgAgAIIwAAAFBBijKXHAAAvKSGE45Kek7RZ0onCw7lYjH11XB1j3OL9AwEYANZICGF/jHFf6XFcDMa+9vgKGgCAAgjAAAAUQAAGgLVzZ+kBXALGvsZYAwYAoAD+AgYAoAACMAAABRCAAWANhBDeEkJ4LITwZAjhPaXHcyEhhPeFEI6FEB5c0jYZQvhUCOGJxf/fWHKM5xNC2BNC+EwI4eEQwkMhhJ9cbL/sx08ABoBVFkKoSvo1SX9b0i2S3hlCuKXsqC7odyS9JWt7j6S7Yow3SLpr8fhy1JX00zHGWyS9XtKPL17ry378BGAAWH2vk/RkjPHpGGNb0gclvbXwmM4rxvg5Saey5rdKev/if79f0tvWc0wrFWM8EmO8b/G/ZyQ9ImmXroDxE4ABYPXtknRwyfGhxbYrybYY45HF/z4qaVvJwaxECGGvpNsl3a0rYPwEYADABcVzv1e9rH+zGkIYlfSHkn4qxnh26b9druMnAAPA6jssac+S492LbVeSqRDCDkla/P9jhcdzXiGEus4F39+PMX5ksfmyHz8BGABW3z2SbgghXBNCaEh6h6SPFh7Ti/VRSe9a/O93SfrjgmM5rxBCkPReSY/EGH9pyT9d9uOnEhYArIEQwndK+k+SqpLeF2P8D2VHdH4hhA9IepPObeM3JelnJf13SR+WdJXOba349hhjnqhVXAjhGyT9paQHJPUXm39G59aBL+vxE4ABACiAr6ABACiAAAwAQAEEYAAACiAAAwBQAAEYAIACCMAAABRAAAYAoID/HxUyuZzDTHLfAAAAAElFTkSuQmCC\n"
 | |
|      },
 | |
|      "metadata": {
 | |
|       "needs_background": "light"
 | |
|      },
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "ename": "KeyboardInterrupt",
 | |
|      "evalue": "",
 | |
|      "output_type": "error",
 | |
|      "traceback": [
 | |
|       "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
 | |
|       "\u001B[0;31mKeyboardInterrupt\u001B[0m                         Traceback (most recent call last)",
 | |
|       "\u001B[0;32m<ipython-input-5-0592df1e05e4>\u001B[0m in \u001B[0;36m<module>\u001B[0;34m\u001B[0m\n\u001B[1;32m      1\u001B[0m \u001B[0;32mwith\u001B[0m \u001B[0mexperiment\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mstart\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m----> 2\u001B[0;31m     \u001B[0mconf\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mrun\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m      3\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml_helpers/train_valid.py\u001B[0m in \u001B[0;36mrun\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m    246\u001B[0m         \u001B[0m_\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mtrainer\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    247\u001B[0m         \u001B[0;32mfor\u001B[0m \u001B[0m_\u001B[0m \u001B[0;32min\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mtraining_loop\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 248\u001B[0;31m             \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mrun_step\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    249\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    250\u001B[0m     \u001B[0;32mdef\u001B[0m \u001B[0msample\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml_helpers/train_valid.py\u001B[0m in \u001B[0;36mrun_step\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m    234\u001B[0m             \u001B[0;32mwith\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mmode\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mupdate\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mis_train\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0;32mTrue\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    235\u001B[0m                 \u001B[0;32mwith\u001B[0m \u001B[0mtracker\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mnamespace\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m'train'\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 236\u001B[0;31m                     \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mtrainer\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    237\u001B[0m             \u001B[0;32mif\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mvalidator\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    238\u001B[0m                 \u001B[0;32mwith\u001B[0m \u001B[0mtracker\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mnamespace\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m'valid'\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml_helpers/train_valid.py\u001B[0m in \u001B[0;36m__call__\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m    136\u001B[0m                 \u001B[0msm\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mon_epoch_start\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    137\u001B[0m         \u001B[0;32mwith\u001B[0m \u001B[0mtorch\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mset_grad_enabled\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mmode\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mis_train\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 138\u001B[0;31m             \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m__iterate\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    139\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    140\u001B[0m         \u001B[0;32mif\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_batch_index\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mcompleted\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml_helpers/train_valid.py\u001B[0m in \u001B[0;36m__iterate\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m    149\u001B[0m                 \u001B[0mbatch\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mnext\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m__iterable\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    150\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 151\u001B[0;31m                 \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mstep\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mbatch\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_batch_index\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    152\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    153\u001B[0m                 \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_batch_index\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mstep\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml_nn/gan/original/experiment.py\u001B[0m in \u001B[0;36mstep\u001B[0;34m(self, batch, batch_idx)\u001B[0m\n\u001B[1;32m    149\u001B[0m             \u001B[0;31m# Log stuff\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    150\u001B[0m             \u001B[0mtracker\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0madd\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m'generated'\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mgenerated_images\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0;36m0\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;36m5\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 151\u001B[0;31m             \u001B[0mtracker\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0madd\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\"loss.generator.\"\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mloss\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    152\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    153\u001B[0m             \u001B[0;31m# Train\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml/tracker.py\u001B[0m in \u001B[0;36madd\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m    131\u001B[0m         \u001B[0;32mif\u001B[0m \u001B[0;32mnot\u001B[0m \u001B[0misinstance\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0margs\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0;36m0\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mstr\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    132\u001B[0m             \u001B[0;32mraise\u001B[0m \u001B[0mTypeError\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m'tracker.add should be called as add(name, value), add(dictionary) or add(k=v,k2=v2...)'\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 133\u001B[0;31m         \u001B[0m_internal\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mstore\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0margs\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0;36m0\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0margs\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0;36m1\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    134\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    135\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml/internal/tracker/__init__.py\u001B[0m in \u001B[0;36mstore\u001B[0;34m(self, key, value)\u001B[0m\n\u001B[1;32m    165\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    166\u001B[0m         \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_create_indicator\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mkey\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mvalue\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 167\u001B[0;31m         \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mindicators\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mkey\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mcollect_value\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mvalue\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    168\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    169\u001B[0m     \u001B[0;32mdef\u001B[0m \u001B[0mnew_line\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml/internal/tracker/indicators/numeric.py\u001B[0m in \u001B[0;36mcollect_value\u001B[0;34m(self, value)\u001B[0m\n\u001B[1;32m     79\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m     80\u001B[0m     \u001B[0;32mdef\u001B[0m \u001B[0mcollect_value\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mvalue\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m---> 81\u001B[0;31m         \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m_values\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mappend\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mto_numpy\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mvalue\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mravel\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m     82\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m     83\u001B[0m     \u001B[0;32mdef\u001B[0m \u001B[0mclear\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml/internal/util/values.py\u001B[0m in \u001B[0;36mto_numpy\u001B[0;34m(value)\u001B[0m\n\u001B[1;32m     20\u001B[0m             \u001B[0;32mreturn\u001B[0m \u001B[0mvalue\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mdata\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mcpu\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mnumpy\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m     21\u001B[0m         \u001B[0;32melif\u001B[0m \u001B[0misinstance\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mvalue\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mtorch\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mTensor\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m---> 22\u001B[0;31m             \u001B[0;32mreturn\u001B[0m \u001B[0mvalue\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mdata\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mcpu\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mnumpy\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m     23\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m     24\u001B[0m     \u001B[0;32mraise\u001B[0m \u001B[0mValueError\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34mf\"Unknown type {type(value)}\"\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;32m~/ml/labmlai/annotated_deep_learning_paper_implementations/labml_helpers/training_loop.py\u001B[0m in \u001B[0;36m__handler\u001B[0;34m(self, sig, frame)\u001B[0m\n\u001B[1;32m    162\u001B[0m             \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0m__finish\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    163\u001B[0m             \u001B[0mlogger\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mlog\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m'Killing loop...'\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mText\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mdanger\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 164\u001B[0;31m             \u001B[0mself\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mold_handler\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0msig\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mframe\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m    165\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m    166\u001B[0m     \u001B[0;32mdef\u001B[0m \u001B[0m__str__\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mself\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n",
 | |
|       "\u001B[0;31mKeyboardInterrupt\u001B[0m: "
 | |
|      ]
 | |
|     }
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "metadata": {
 | |
|     "id": "oBXXlP2b7XZO"
 | |
|    },
 | |
|    "source": [
 | |
|     ""
 | |
|    ],
 | |
|    "execution_count": null,
 | |
|    "outputs": []
 | |
|   }
 | |
|  ]
 | |
| } | 
