Files
Varuna Jayasiri a8954c1cbb fix math align
2021-10-24 17:26:28 +05:30

294 lines
11 KiB
Python

"""
---
title: Rectified Adam (RAdam) optimizer
summary: A simple PyTorch implementation/tutorial of RAdam optimizer.
---
# Rectified Adam (RAdam) optimizer
This implementation is based on
[the official implementation](https://github.com/LiyuanLucasLiu/RAdam)
of the paper
[On the Variance of the Adaptive Learning Rate and Beyond](https://papers.labml.ai/paper/1908.03265).
We have implemented it in [PyTorch](https://pytorch.org)
as an extension to [our AMSGrad implementation](amsgrad.html)
thus requiring only the modifications to be implemented.
Adam optimizer sometimes converges to a bad local optima during the initial stages of the training;
especially when training transformers.
Researches use warmups to counter this; for the the initial training steps (warm-up stage)
they use a low learning rate.
This paper identifies the problem to be the high variance of adaptive learning rate
during initial stages of training, and counters it using a new rectification term to
reduce variance.
The paper also evaluates two variance reduction mechanisms:
* **Adam-2k**: Only compute the adaptive learning rate ($v_t$ in [Adam](adam.html)) during the first 2k steps,
without changing parameters or calculating momentum ($m_t$).
* **Adam-eps**: Adam with large $\epsilon \approx 10^{-4}$.
## Rectified Adam
Let $\sigma(g_1, ..., g_t)$ and $\psi(g_1, ..., g_t)$ be the functions to calculate
momentum and adaptive learning rate.
For Adam, they are
\begin{align}
\sigma(g_1, ..., g_t) &= \frac{(1 - \beta_1)\sum_{i=1}^t \beta_1^{t-i} g_i}{1 - \beta_1^t} \\
\psi(g_1, ..., g_t) &= \sqrt \frac{1 - \beta_2^t}{(1 - \beta_2)\sum_{i=1}^t \beta_2^{t-i} g_i^2}
\end{align}
### Exponential moving average as simple moving average
The distribution of exponential moving average can be approximated as a simple moving average.
\begin{align}
p\Bigg(\frac{(1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} g_i^2}{1 - \beta_2^t} \Bigg) \approx
p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
\end{align}
Here we are taking the simple moving average of the last $f(t,\beta_2)$ gradients.
$f(t,\beta_2)$ satisfies the following,
\begin{align}
\frac{(1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot i}{1 - \beta_2^t} =
\frac{\sum_{i=1}^{f(t,\beta_2)} (t+1-i)}{f(t,\beta_2)}
\end{align}
which gives,
$$f(t,\beta_2) = \frac{2}{1-\beta_2} - 1 - \frac{2 t \beta_2^t}{1 - \beta_2^t}$$
### Scaled inverse chi-squared
From above we have
$$
p\Big( \psi^2(g_1, ..., g_t) \Big) \approx
p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
$$
where $g_i \sim \mathcal{N}(0, \sigma^2)$.
Note that $sigma$ here is the standard deviation and different from $\sigma(.)$ for momentum.
[Scaled inverse chi-squared](https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution)
is the distribution of squared inverse of mean of $p$ normal distributions.
$$
p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
\sim
\text{Scale-inv} \mathcal{X}^2(\rho,\frac{1}{\sigma^2})
$$
where $\rho = f(t,\beta_2)$.
### Rectification
They prove that variance of $\psi(.)$ decreases with $\rho$ when
$\psi^2(.) \sim \text{Scale-inv} \mathcal{X}^2(\rho,\frac{1}{\sigma^2})$.
Therefore the variance is minimized at maximal $\rho$ which is
$\rho_{\infty} = \frac{2}{1-\beta_2} - 1$. Let the minimum variance be $C_{\text{var}}$
In order to ensure that the adaptive learning
rate $\psi(.)$ has consistent variance, we rectify the variance with $r$
\begin{align}
r = \sqrt{\frac{C_{\text{var}}}{Var\big[\psi(.)\big]}}
\end{align}
### Approximating $Var[\psi(.)]$
They estimate $Var[\psi(.)] \approx \frac{Var[\psi^2(.)]}{4 \mathbb{E}[\psi^2(.)}$
based on first order expansion of $\sqrt{\psi^2(.)}$
🤪 I didn't get how it was derived.
From $\text{Scale-inv} \mathcal{X}^2$ distribution we have,
\begin{align}
\mathbb{E}\big[\psi^2(.)\big] &= \frac{\rho / \sigma^2}{\rho-2} \\
Var\big[\psi^2(.)\big] &= \frac{2 \rho / \sigma^4}{(\rho-2)^2 (\rho - 2)}
\end{align}
which gives,
$$
Var[\psi(.)] \approx \frac{\rho}{2(\rho-2)(\rho-4)\sigma^2}
$$
### Rectification term
We have
\begin{align}
r &= \sqrt{\frac{C_{\text{var}}}{Var\big[\psi(.)\big]}} \\
Var[\psi(.)] &\approx \frac{\rho}{2(\rho-2)(\rho-4)\sigma^2}
\end{align}
where $C_{\text{var}}$ is $Var\big[\psi(.)\big]$ for $\rho_\infty$.
Lt $\rho$ and step $t$ be $\rho_t$, and $r_t$ be the rectification term
at step $t$.
\begin{align}
C_{\text{var}} &\approx \frac{\rho_\infty}{2(\rho_\infty-2)(\rho_\infty-4)\sigma^2} \\
Var[\psi(g_1,...,g_t)] &\approx \frac{\rho_t}{2(\rho_t-2)(\rho_t-4)\sigma^2}
\end{align}
This gives,
\begin{align}
r_t &= \sqrt{\frac{(\rho_t-2)(\rho_t-4)\rho_\infty}{(\rho_\infty-2)(\rho_\infty-4)\rho_t}}
\end{align}
"""
import math
from typing import Dict, Optional
import torch
from labml_nn.optimizers import WeightDecay
from labml_nn.optimizers.amsgrad import AMSGrad
class RAdam(AMSGrad):
"""
## Rectified Adam Optimizer
This class extends from AMSAdam optimizer defined in [`amsadam.py`](amsadam.html).
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
amsgrad=False,
degenerated_to_sgd=True, defaults=None):
"""
### Initialize the optimizer
* `params` is the list of parameters
* `lr` is the learning rate $\alpha$
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
* `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
* `optimized_update` is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$
* `amsgrad` is a flag indicating whether to use AMSGrad or fallback to plain Adam
* `degenerate_to_sgd` whether to use sgd when the rectification term $r_t$ is intractable.
* `defaults` is a dictionary of default for group values.
This is useful when you want to extend the class `RAdam`.
"""
self.degenerated_to_sgd = degenerated_to_sgd
super().__init__(params, lr, betas, eps, weight_decay, optimized_update, amsgrad, defaults)
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
"""
### Take an update step for a given parameter tensor
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
* `param` is the parameter tensor $\theta_{t-1}$
"""
# Calculate weight decay
grad = self.weight_decay(param, grad, group)
# Get $m_t$ and $v_t$; i.e. $\sigma(.)$ and $\psi(.)$ without bias correction
m, v = self.get_mv(state, group, grad)
# Calculate $t$ the number of optimizer steps
state['step'] += 1
# Perform *RAdam* update
self.r_adam_update(state, group, param, m, v)
@staticmethod
def calc_rectification_term(beta2: float, step: int) -> Optional[float]:
"""
### Calculate rectification term $r_t$
"""
# $\beta_2^t$
beta2_t = beta2 ** step
# $$\rho_\infty = \frac{2}{1 - \beta_2} - 1$$
rho_inf = 2 / (1 - beta2) - 1
# $$\rho_t = \frac{2}{1-\beta_2} - 1 - \frac{2 t \beta_2^t}{1-\beta_2^t}$$
rho = rho_inf - 2 * step * beta2_t / (1 - beta2_t)
# $r_t$ is tractable when $\rho_t >= 4$.
# We are being a little more conservative since it's an approximated value
if rho >= 5:
# $$r_t = \sqrt{\frac{(\rho_t-2)(\rho_t-4)\rho_\infty}{(\rho_\infty-2)(\rho_\infty-4)\rho_t}}$$
r2 = (rho - 4) / (rho_inf - 4) * (rho - 2) / rho * rho_inf / (rho_inf - 2)
return math.sqrt(r2)
else:
return None
def r_adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
m: torch.Tensor, v: torch.Tensor):
"""
### Do the *RAdam* parameter update
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `param` is the parameter tensor $\theta_{t-1}$
* `m` and `v` are the uncorrected first and second moments $m_t$ and $v_t$;
i.e. $\sigma(.)$ and $\psi(.)$ without bias correction
"""
# Get $\beta_1$ and $\beta_2$
beta1, beta2 = group['betas']
# Bias correction term for $\hat{m}_t$, $1 - \beta_1^t$
bias_correction1 = 1 - beta1 ** state['step']
# Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
bias_correction2 = 1 - beta2 ** state['step']
r = self.calc_rectification_term(beta2, state['step'])
# Get learning rate
lr = self.get_lr(state, group)
# If $r_t$ is intractable
if r is not None:
# Whether to optimize the computation by combining scalar computations
if self.optimized_update:
# Denominator $\sqrt{v_t} + \hat{\epsilon}$
denominator = v.sqrt().add_(group['eps'])
# Step size $\alpha \sqrt{r_t} * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
step_size = lr * math.sqrt(bias_correction2) * r / bias_correction1
# Update parameters $\theta_t \leftarrow \theta_{t-1} - \alpha \sqrt{r_t} \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
# \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
param.data.addcdiv_(m, denominator, value=-step_size)
# Computation without optimization
else:
# Denominator $\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
# Step size $\frac{\alpha \sqrt{r_t}}{1-\beta_1^t}$
step_size = lr * r / bias_correction1
# Update parameters $\theta_t \leftarrow \theta_{t-1} - \alpha \sqrt{r_t} \cdot
# \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$
param.data.addcdiv_(m, denominator, value=-step_size)
# If $r_t$ is intractable do a SGD with momentum
elif self.degenerated_to_sgd:
# Step size $\frac{\alpha}{1-\beta_1^t}$
step_size = lr / bias_correction1
# Update parameters
# $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t$
param.data.add_(m, alpha=-step_size)
def _test_rectification_term():
"""
### Plot $r_t$ against $t$ for various $\beta_2$
![Plot of r_t](radam_r_t.png)
"""
import matplotlib.pyplot as plt
import numpy as np
beta2 = [0.9999, 0.999, 0.99, 0.9, 0.8, 0.6, 0.5]
plt.plot(np.arange(1, 5_000), [[RAdam.calc_rectification_term(b, i) for b in beta2] for i in range(1, 5_000)])
plt.legend(beta2)
plt.title("Optimizer")
plt.show()
if __name__ == '__main__':
_test_rectification_term()