Files

326 lines
10 KiB
Python

"""
---
title: Configurable Transformer Components
summary: These are configurable components that can be re-used quite easily.
---
# Configurable Transformer Components
"""
import copy
import torch.nn as nn
from labml.configs import BaseConfigs, option, calculate, aggregate
from .feed_forward import FeedForward
from .mha import MultiHeadAttention
from .models import EmbeddingsWithPositionalEncoding, EmbeddingsWithLearnedPositionalEncoding, TransformerLayer, \
Encoder, Decoder, Generator, EncoderDecoder
class FeedForwardConfigs(BaseConfigs):
"""
<a id="FFN"></a>
## FFN Configurations
Creates a Position-wise FeedForward Network defined in
[`feed_forward.py`](feed_forward.html).
"""
# Position-wise feedforward layer
ffn: FeedForward
# Number of features in the embedding
d_model: int
# Number of features in in the hidden layer
d_ff: int = 2048
# Dropout probability
dropout: float = 0.1
# Activation in position-wise feedforward layer
activation: nn.Module = 'ReLU'
# Whether the FFN layer should be gated
is_gated: bool = False
# Whether the first fully connected layer should have a learnable bias
bias1: bool = True
# Whether the second fully connected layer should have a learnable bias
bias2: bool = True
# Whether the fully connected layer for the gate should have a learnable bias
bias_gate: bool = False
# Predefined GLU variants
glu_variant: str = 'none'
@option(FeedForwardConfigs.activation, 'ReLU')
def _ffn_activation_relu():
"""
### ReLU activation
$$\max(0, x)$$
"""
return nn.ReLU()
@option(FeedForwardConfigs.activation, 'GELU')
def _ffn_activation_gelu():
"""
### GELU activation
$$x \Phi(x)$$ where $\Phi(x) = P(X \le x), X \sim \mathcal{N}(0,1)$
It was introduced in paper [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).
"""
return nn.GELU()
@option(FeedForwardConfigs.ffn, 'default')
def _feed_forward(c: FeedForwardConfigs):
"""
Initialize a [feed forward network](feed_forward.html)
"""
return FeedForward(c.d_model, c.d_ff,
dropout=c.dropout,
activation=c.activation,
is_gated=c.is_gated,
bias1=c.bias1,
bias2=c.bias2,
bias_gate=c.bias_gate)
# ## GLU Variants
# These are variants with gated hidden layers for the FFN
# as introduced in paper [GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202).
# We have omitted the bias terms as specified in the paper.
# ### FFN with Gated Linear Units
#
# $$FFN_{GLU}(x)(x, W_1, V, W_2) = (\sigma(x W_1) \otimes x V) W_2$$
aggregate(FeedForwardConfigs.glu_variant, 'GLU',
(FeedForwardConfigs.is_gated, True),
(FeedForwardConfigs.bias1, False),
(FeedForwardConfigs.bias2, False),
(FeedForwardConfigs.bias_gate, False),
(FeedForwardConfigs.activation, nn.Sigmoid()))
# ### FFN with Bilinear hidden layer
#
# $$FFN_{Bilinear}(x)(x, W_1, V, W_2) = (x W_1 \otimes x V) W_2$$
aggregate(FeedForwardConfigs.glu_variant, 'Bilinear',
(FeedForwardConfigs.is_gated, True),
(FeedForwardConfigs.bias1, False),
(FeedForwardConfigs.bias2, False),
(FeedForwardConfigs.bias_gate, False),
(FeedForwardConfigs.activation, nn.Identity()))
# ### FFN with ReLU gate
#
# $$FFN_{ReGLU}(x)(x, W_1, V, W_2) = (\max(0, x W_1) \otimes x V) W_2$$
aggregate(FeedForwardConfigs.glu_variant, 'ReGLU',
(FeedForwardConfigs.is_gated, True),
(FeedForwardConfigs.bias1, False),
(FeedForwardConfigs.bias2, False),
(FeedForwardConfigs.bias_gate, False),
(FeedForwardConfigs.activation, nn.ReLU()))
# ### FFN with GELU gate
#
# $$FFN_{GEGLU}(x)(x, W_1, V, W_2) = (\text{GELU}(x W_1) \otimes x V) W_2$$
aggregate(FeedForwardConfigs.glu_variant, 'GEGLU',
(FeedForwardConfigs.is_gated, True),
(FeedForwardConfigs.bias1, False),
(FeedForwardConfigs.bias2, False),
(FeedForwardConfigs.bias_gate, False),
(FeedForwardConfigs.activation, nn.GELU()))
# ### FFN with Swish gate
#
# $$FFN_{SwiGLU}(x)(x, W_1, V, W_2) = (\text{Swish}_1(x W_1) \otimes x V) W_2$$
# where $\text{Swish}_\beta(x) = x \sigma(\beta x)$
aggregate(FeedForwardConfigs.glu_variant, 'SwiGLU',
(FeedForwardConfigs.is_gated, True),
(FeedForwardConfigs.bias1, False),
(FeedForwardConfigs.bias2, False),
(FeedForwardConfigs.bias_gate, False),
(FeedForwardConfigs.activation, nn.SiLU()))
class TransformerConfigs(BaseConfigs):
"""
<a id="TransformerConfigs"></a>
## Transformer Configurations
This defines configurations for a transformer.
The configurations are calculate using option functions.
These are lazy loaded and therefore only the necessary modules
are calculated.
"""
# Number of attention heads
n_heads: int = 8
# Transformer embedding size
d_model: int = 512
# Number of layers
n_layers: int = 6
# Dropout probability
dropout: float = 0.1
# Number of tokens in the source vocabulary (for token embeddings)
n_src_vocab: int
# Number of tokens in the target vocabulary (to generate logits for prediction)
n_tgt_vocab: int
# The encoder self attention
encoder_attn: MultiHeadAttention = 'mha'
# The decoder self attention
decoder_attn: MultiHeadAttention = 'mha'
# The decoder memory attention
decoder_mem_attn: MultiHeadAttention = 'mha'
# Configurable Feedforward Layer
ffn: FeedForwardConfigs
# Encoder layer
encoder_layer: TransformerLayer = 'default'
# Decoder layer
decoder_layer: TransformerLayer = 'default'
# Encoder consisting of multiple encoder layers
encoder: Encoder = 'default'
# Encoder consisting of multiple decoder layers
decoder: Decoder = 'default'
# Embedding layer for source
src_embed: nn.Module = 'fixed_pos'
# Embedding layer for target (for decoder)
tgt_embed: nn.Module = 'fixed_pos'
# Logit generator for prediction
generator: Generator = 'default'
# Encoder-decoder
encoder_decoder: EncoderDecoder
# ### Multi-head Attention
def _mha(c: TransformerConfigs):
return MultiHeadAttention(c.n_heads, c.d_model, dropout_prob=c.dropout)
calculate(TransformerConfigs.encoder_attn, 'mha', _mha)
calculate(TransformerConfigs.decoder_attn, 'mha', _mha)
calculate(TransformerConfigs.decoder_mem_attn, 'mha', _mha)
# ### Relative Multi-head Attention
def _relative_mha(c: TransformerConfigs):
from labml_nn.transformers.xl.relative_mha import RelativeMultiHeadAttention
return RelativeMultiHeadAttention(c.n_heads, c.d_model)
calculate(TransformerConfigs.encoder_attn, 'relative', _relative_mha)
calculate(TransformerConfigs.decoder_attn, 'relative', _relative_mha)
calculate(TransformerConfigs.decoder_mem_attn, 'relative', _relative_mha)
@option(TransformerConfigs.ffn, 'default')
def _feed_forward(c: TransformerConfigs):
"""
Create feedforward layer configurations
"""
conf = FeedForwardConfigs()
conf.set_default(FeedForwardConfigs.d_model, func=lambda: c.d_model)
conf.set_default(FeedForwardConfigs.dropout, func=lambda: c.dropout)
return conf
@option(TransformerConfigs.encoder_layer, 'default')
def _encoder_layer(c: TransformerConfigs):
"""
Encoder layer
"""
return TransformerLayer(d_model=c.d_model, self_attn=c.encoder_attn,
src_attn=None, feed_forward=copy.deepcopy(c.ffn.ffn),
dropout_prob=c.dropout)
@option(TransformerConfigs.decoder_layer, 'default')
def _decoder_layer(c: TransformerConfigs):
"""
Decoder layer
"""
return TransformerLayer(d_model=c.d_model, self_attn=c.decoder_attn,
src_attn=c.decoder_mem_attn, feed_forward=copy.deepcopy(c.ffn.ffn),
dropout_prob=c.dropout)
@option(TransformerConfigs.encoder, 'default')
def _encoder(c: TransformerConfigs):
"""
Encoder
"""
return Encoder(c.encoder_layer, c.n_layers)
@option(TransformerConfigs.decoder, 'default')
def _decoder(c: TransformerConfigs):
"""
Decoder
"""
return Decoder(c.decoder_layer, c.n_layers)
@option(TransformerConfigs.generator, 'default')
def _generator(c: TransformerConfigs):
"""
Logit generator
"""
return Generator(c.n_tgt_vocab, c.d_model)
# ### Fixed Positional Embeddings
@option(TransformerConfigs.src_embed, 'fixed_pos')
def _src_embed_with_positional(c: TransformerConfigs):
"""
Source embedding with fixed positional encodings
"""
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_src_vocab)
@option(TransformerConfigs.tgt_embed, 'fixed_pos')
def _tgt_embed_with_positional(c: TransformerConfigs):
"""
Target embedding with fixed positional encodings
"""
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_tgt_vocab)
# ### Learned Positional Embeddings
@option(TransformerConfigs.src_embed, 'learned_pos')
def _src_embed_with_learned_positional(c: TransformerConfigs):
"""
Source embedding with learned positional encodings
"""
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_src_vocab)
@option(TransformerConfigs.tgt_embed, 'learned_pos')
def _tgt_embed_with_learned_positional(c: TransformerConfigs):
"""
Target embedding with learned positional encodings
"""
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_tgt_vocab)
# ### No Positional Embeddings
@option(TransformerConfigs.src_embed, 'no_pos')
def _src_embed_without_positional(c: TransformerConfigs):
"""
Source embedding without positional encodings
"""
return nn.Embedding(c.n_src_vocab, c.d_model)
@option(TransformerConfigs.tgt_embed, 'no_pos')
def _tgt_embed_without_positional(c: TransformerConfigs):
return nn.Embedding(c.n_tgt_vocab, c.d_model)
@option(TransformerConfigs.encoder_decoder, 'default')
def _encoder_decoder(c: TransformerConfigs):
return EncoderDecoder(c.encoder, c.decoder, c.src_embed, c.tgt_embed, c.generator)