Files
Varuna Jayasiri 20494ae94c fix gae formula
2024-06-24 15:58:03 +05:30

83 lines
2.6 KiB
Python

"""
---
title: Generalized Advantage Estimation (GAE)
summary: A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE).
---
# Generalized Advantage Estimation (GAE)
This is a [PyTorch](https://pytorch.org) implementation of paper
[Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438).
You can find an experiment that uses it [here](experiment.html).
"""
import numpy as np
class GAE:
def __init__(self, n_workers: int, worker_steps: int, gamma: float, lambda_: float):
self.lambda_ = lambda_
self.gamma = gamma
self.worker_steps = worker_steps
self.n_workers = n_workers
def __call__(self, done: np.ndarray, rewards: np.ndarray, values: np.ndarray) -> np.ndarray:
"""
### Calculate advantages
\begin{align}
\hat{A_t^{(1)}} &= r_t + \gamma V(s_{t+1}) - V(s)
\\
\hat{A_t^{(2)}} &= r_t + \gamma r_{t+1} +\gamma^2 V(s_{t+2}) - V(s)
\\
...
\\
\hat{A_t^{(\infty)}} &= r_t + \gamma r_{t+1} +\gamma^2 r_{t+2} + ... - V(s)
\end{align}
$\hat{A_t^{(1)}}$ is high bias, low variance, whilst
$\hat{A_t^{(\infty)}}$ is unbiased, high variance.
We take a weighted average of $\hat{A_t^{(k)}}$ to balance bias and variance.
This is called Generalized Advantage Estimation.
$$\hat{A_t} = \hat{A_t^{GAE}} = \frac{\sum_k w_k \hat{A_t^{(k)}}}{\sum_k w_k}$$
We set $w_k = \lambda^{k-1}$, this gives clean calculation for
$\hat{A_t}$
\begin{align}
\delta_t &= r_t + \gamma V(s_{t+1}) - V(s_t)
\\
\hat{A_t} &= \delta_t + \gamma \lambda \delta_{t+1} + ... +
(\gamma \lambda)^{T - t + 1} \delta_{T - 1}
\\
&= \delta_t + \gamma \lambda \hat{A_{t+1}}
\end{align}
"""
# advantages table
advantages = np.zeros((self.n_workers, self.worker_steps), dtype=np.float32)
last_advantage = 0
# $V(s_{t+1})$
last_value = values[:, -1]
for t in reversed(range(self.worker_steps)):
# mask if episode completed after step $t$
mask = 1.0 - done[:, t]
last_value = last_value * mask
last_advantage = last_advantage * mask
# $\delta_t$
delta = rewards[:, t] + self.gamma * last_value - values[:, t]
# $\hat{A_t} = \delta_t + \gamma \lambda \hat{A_{t+1}}$
last_advantage = delta + self.gamma * self.lambda_ * last_advantage
#
advantages[:, t] = last_advantage
last_value = values[:, t]
# $\hat{A_t}$
return advantages