Files
2024-08-18 16:25:21 +05:30

193 lines
6.2 KiB
Python

"""
---
title: GPT-2 with LoRA
summary: GPT-2 implementation with LoRA modules
---
# GPT-2 with [LoRA modules](index.html)
Here's [the training code](experiment.html) for training a GPT2 model with LoRA
on Tiny Shakespeare dataset.
"""
import torch
import torch.nn as nn
from labml_nn.lora import Linear, Embedding
class FFN(nn.Module):
"""
### Feedforward Network
"""
def __init__(self, d_model: int, d_ff: int, r: int):
"""
:param d_model: is the number of dimensions
:param d_ff: is the size of the hidden dimension
:param r: is the lora rank
"""
super().__init__()
# The linear layers and the activation
self.linear_in = Linear(d_model, d_ff, r=r, bias=True)
self.linear_out = Linear(d_ff, d_model, r=r, bias=True)
self.act = nn.GELU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
:param x: is the embeddings tensor with shape `[batch_size, seq_len, d_model]`
"""
x = self.linear_in(x)
x = self.act(x)
x = self.linear_out(x)
return x
class MultiHeadAttention(nn.Module):
"""
### Multi-Head Attention
"""
def __init__(self, d_model: int, n_heads: int, r: int):
"""
:param d_model: is the number of dimensions in the embeddings
:param n_heads: is the number of heads
:param r: is the lora rank
"""
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_head = d_model // n_heads
# Linear transformation for QKV
self.qkv_projection = Linear(d_model, d_model * 3, r=r, bias=True)
# Output projection
self.output_projection = Linear(d_model, d_model, r=r, bias=True)
def _split_heads(self, x: torch.Tensor):
"""
:param x: is the tensor with shape `[batch_size, seq_len, d_model]`
"""
# Split last dimension to `[n_heads, d_head]`
x = x.view(x.shape[:-1] + (self.n_heads, self.d_head))
# Reorder to `[batch_size, head, seq_length, d_head]`
return x.permute(0, 2, 1, 3)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
:param x: is the embeddings tensor with shape `[batch_size, seq_len, d_model]`
"""
batch_size, seq_length, _ = x.shape
# Get query, key and value
q, k, v = self.qkv_projection(x).split(self.d_model, dim=-1)
# Transform them from shape `[batch_size, seq_len, d_model]` to `[batch_size, head, seq_length, d_head]`
q = self._split_heads(q)
k = self._split_heads(k)
v = self._split_heads(v)
# Apply causal attention
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True)
# Transform them from shape `[batch_size, head, seq_length, d_head]` to `[batch_size, seq_len, d_model]`
attn_output = attn_output.permute(0, 2, 1, 3).reshape(batch_size, seq_length, self.d_model)
# Final project
return self.output_projection(attn_output)
class Block(nn.Module):
"""
### Decoder block
"""
def __init__(self, d_model: int, n_heads: int, layer_norm_epsilon: float, r: int):
"""
:param d_model: is the number of dimensions in the embeddings
:param n_heads: is the number of heads
:param layer_norm_epsilon: is the layer norm epsilon
:param r: is the lora rank
"""
super().__init__()
# Attention pre-normalization layer
self.attn_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
# Attention layer
self.attn = MultiHeadAttention(d_model, n_heads, r)
# FFN pre-normalization layer
self.ffn_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
# Feed-forward network
self.ffn = FFN(d_model, d_model * 4, r)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
:param x: is the embeddings tensor with shape `[batch_size, seq_len, d_model]`
"""
# Attention
x = x + self.attn(self.attn_norm(x))
# FFN
x = x + self.ffn(self.ffn_norm(x))
return x
class GPTModel(nn.Module):
"""
## GPT2 Model
"""
def __init__(self, *, d_model: int,
n_heads: int, n_layers: int,
n_positions: int,
layer_norm_epsilon: float,
vocab_size: int, r: int):
"""
:param d_model: is the number of dimensions in the embeddings
:param n_heads: is the number of attention heads
:param n_layers: is the number of decoder layers
:param n_positions: is the number of positional embeddings
:param layer_norm_epsilon: is the layer norm epsilon
:param vocab_size: is the vocabulary size
:param r: is the lora rank
"""
super().__init__()
# Token and absolute positional embeddings
self.token_embedding = Embedding(vocab_size, d_model, r=r)
self.position_embedding = Embedding(n_positions, d_model, r=r)
# Decoder blocks
self.blocks = nn.ModuleList([Block(d_model, n_heads, layer_norm_epsilon, r=r)
for _ in range(n_layers)])
# Final layer norm
self.final_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
# Projection layer to logit space
self.lm_head = Linear(d_model, vocab_size, r=r, bias=False)
def forward(self, input_ids: torch.Tensor):
"""
:param input_ids: has shape `[batch_size, seq_len]`
"""
batch_size, seq_len = input_ids.shape
# Get token embeddings
token_embeddings = self.token_embedding(input_ids)
# Get position ids
position_ids = torch.arange(seq_len, device=input_ids.device)[None, :]
# Get position embeddings
position_embeddings = self.position_embedding(position_ids)
# Add position embeddings
x = token_embeddings + position_embeddings
# Run through transformer blocks
for block in self.blocks:
x = block(x)
# Final normalization
x = self.final_norm(x)
# Get logits from projection layer
return self.lm_head(x)