mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 09:31:42 +08:00
501 lines
41 KiB
HTML
501 lines
41 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en">
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||
<meta name="description" content="A simple PyTorch implementation/tutorial of Adam optimizer"/>
|
||
|
||
<meta name="twitter:card" content="summary"/>
|
||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta name="twitter:title" content="Adam Optimizer for Half Precision Training"/>
|
||
<meta name="twitter:description" content="A simple PyTorch implementation/tutorial of Adam optimizer"/>
|
||
<meta name="twitter:site" content="@labmlai"/>
|
||
<meta name="twitter:creator" content="@labmlai"/>
|
||
|
||
<meta property="og:url" content="https://nn.labml.ai/optimizers/adam_fp16.html"/>
|
||
<meta property="og:title" content="Adam Optimizer for Half Precision Training"/>
|
||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta property="og:site_name" content="Adam Optimizer for Half Precision Training"/>
|
||
<meta property="og:type" content="object"/>
|
||
<meta property="og:title" content="Adam Optimizer for Half Precision Training"/>
|
||
<meta property="og:description" content="A simple PyTorch implementation/tutorial of Adam optimizer"/>
|
||
|
||
<title>Adam Optimizer for Half Precision Training</title>
|
||
<link rel="shortcut icon" href="/icon.png"/>
|
||
<link rel="stylesheet" href="../pylit.css?v=1">
|
||
<link rel="canonical" href="https://nn.labml.ai/optimizers/adam_fp16.html"/>
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-4V3HC8HBLH');
|
||
</script>
|
||
</head>
|
||
<body>
|
||
<div id='container'>
|
||
<div id="background"></div>
|
||
<div class='section'>
|
||
<div class='docs'>
|
||
<p>
|
||
<a class="parent" href="/">home</a>
|
||
<a class="parent" href="index.html">optimizers</a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
|
||
<img alt="Github"
|
||
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
|
||
style="max-width:100%;"/></a>
|
||
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
|
||
<img alt="Twitter"
|
||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||
style="max-width:100%;"/></a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/optimizers/adam_fp16.py" target="_blank">
|
||
View code on Github</a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-0'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-0'>#</a>
|
||
</div>
|
||
<h1>Adam Optimizer for Half Precision Training</h1>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">10</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Any</span>
|
||
<span class="lineno">11</span>
|
||
<span class="lineno">12</span><span class="kn">import</span> <span class="nn">torch</span>
|
||
<span class="lineno">13</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||
<span class="lineno">14</span><span class="kn">from</span> <span class="nn">torch.optim</span> <span class="kn">import</span> <span class="n">Optimizer</span>
|
||
<span class="lineno">15</span><span class="kn">from</span> <span class="nn">torch.cuda.amp</span> <span class="kn">import</span> <span class="n">grad_scaler</span>
|
||
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">defaultdict</span><span class="p">,</span> <span class="n">abc</span>
|
||
<span class="lineno">17</span>
|
||
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers</span> <span class="kn">import</span> <span class="n">WeightDecay</span>
|
||
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam</span> <span class="kn">import</span> <span class="n">Adam</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-1'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-1'>#</a>
|
||
</div>
|
||
<h2>Adam Optimizer for Half Precision Training</h2>
|
||
<p>We extend <a href="adam.html">Adam Optimizer</a> but use FP32 to store gradients and moments.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">22</span><span class="k">class</span> <span class="nc">AdamFP16</span><span class="p">(</span><span class="n">Adam</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-2'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-2'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">29</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-3</span><span class="p">,</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">),</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-16</span><span class="p">,</span>
|
||
<span class="lineno">30</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="n">WeightDecay</span> <span class="o">=</span> <span class="n">WeightDecay</span><span class="p">(),</span> <span class="n">optimized_update</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
|
||
<span class="lineno">31</span> <span class="n">defaults</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-3'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-3'>#</a>
|
||
</div>
|
||
<p>Parameter to store 32 bit gradients. This get populated by the <code class="highlight"><span></span><span class="n">GradScaler</span></code>
|
||
defined below. </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">33</span> <span class="bp">self</span><span class="o">.</span><span class="n">grad_fp32</span> <span class="o">=</span> <span class="p">{}</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-4'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-4'>#</a>
|
||
</div>
|
||
<p>Call the <a href="adam.html">Adam Optimizer</a> initializer </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">35</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="p">,</span> <span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">,</span> <span class="n">optimized_update</span><span class="p">,</span> <span class="n">defaults</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-5'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-5'>#</a>
|
||
</div>
|
||
<h3>Initialize a parameter state</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">state</span></code>
|
||
is the optimizer state of the parameter (tensor) </li>
|
||
<li><code class="highlight"><span></span><span class="n">group</span></code>
|
||
stores optimizer attributes of the parameter group </li>
|
||
<li><code class="highlight"><span></span><span class="n">param</span></code>
|
||
is the parameter tensor <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqa" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></span></li></ul>
|
||
<p>All the state tensors use FP32.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">37</span> <span class="k">def</span> <span class="nf">init_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">param</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-6'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-6'>#</a>
|
||
</div>
|
||
<p>This is the number of optimizer steps taken on the parameter, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord coloredeq eqe" style=""><span class="mord mathnormal" style="">t</span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-7'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-7'>#</a>
|
||
</div>
|
||
<p>Exponential moving average of gradients, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqc" style=""><span class="mord" style=""><span class="mord mathnormal" style="">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">51</span> <span class="n">state</span><span class="p">[</span><span class="s1">'exp_avg'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="n">memory_format</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">preserve_format</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-8'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-8'>#</a>
|
||
</div>
|
||
<p>Exponential moving average of squared gradient values, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">53</span> <span class="n">state</span><span class="p">[</span><span class="s1">'exp_avg_sq'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="n">memory_format</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">preserve_format</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-9'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-9'>#</a>
|
||
</div>
|
||
<p>Maintain a FP32 copy of the parameters </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">55</span> <span class="n">state</span><span class="p">[</span><span class="s1">'fp32_copy'</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-10'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-10'>#</a>
|
||
</div>
|
||
<h3>Take an update step for a given parameter tensor</h3>
|
||
<ul><li><code class="highlight"><span></span><span class="n">state</span></code>
|
||
is the optimizer state of the parameter (tensor) </li>
|
||
<li><code class="highlight"><span></span><span class="n">group</span></code>
|
||
stores optimizer attributes of the parameter group </li>
|
||
<li><code class="highlight"><span></span><span class="n">grad</span></code>
|
||
is the current gradient tensor <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight coloredeq eqe" style=""><span class="mord mathnormal mtight" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> for the parameter <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqa" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">param</span></code>
|
||
is the parameter tensor <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.902771em;vertical-align:-0.208331em;"></span><span class="mord coloredeq eqa" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.02778em">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span><span class="mbin mtight" style="">−</span><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></span></li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">57</span> <span class="k">def</span> <span class="nf">step_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-11'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-11'>#</a>
|
||
</div>
|
||
<p>Get the FP32 parameters </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">68</span> <span class="n">param_fp32</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">'fp32_copy'</span><span class="p">]</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-12'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-12'>#</a>
|
||
</div>
|
||
<p>Get the FP32 gradients if available </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">70</span> <span class="n">grad_fp32</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">grad_fp32</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
|
||
<span class="lineno">71</span> <span class="k">if</span> <span class="n">grad_fp32</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="lineno">72</span> <span class="k">del</span> <span class="bp">self</span><span class="o">.</span><span class="n">grad_fp32</span><span class="p">[</span><span class="n">param</span><span class="p">]</span>
|
||
<span class="lineno">73</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">grad_fp32</span>
|
||
<span class="lineno">74</span> <span class="k">else</span><span class="p">:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-13'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-13'>#</a>
|
||
</div>
|
||
<p>Otherwise, convert the gradients to FP32 </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">76</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">grad</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-14'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-14'>#</a>
|
||
</div>
|
||
<p>Calculate weight decay </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">79</span> <span class="n">grad</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">(</span><span class="n">param_fp32</span><span class="p">,</span> <span class="n">grad</span><span class="p">,</span> <span class="n">group</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-15'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-15'>#</a>
|
||
</div>
|
||
<p>Get <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqc" style=""><span class="mord" style=""><span class="mord mathnormal" style="">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span> and <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqd" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.03588em">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqe" style="">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">82</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_mv</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">grad</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-16'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-16'>#</a>
|
||
</div>
|
||
<p>Increment <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.61508em;vertical-align:0em;"></span><span class="mord coloredeq eqe" style=""><span class="mord mathnormal" style="">t</span></span></span></span></span></span> the number of optimizer steps </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">85</span> <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-17'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-17'>#</a>
|
||
</div>
|
||
<p>Perform <em>Adam</em> update </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">88</span> <span class="bp">self</span><span class="o">.</span><span class="n">adam_update</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">param_fp32</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-18'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-18'>#</a>
|
||
</div>
|
||
<p>Set the parameters </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">91</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">param_fp32</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-19'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-19'>#</a>
|
||
</div>
|
||
<h2>Gradient Scaler with half precision gradients</h2>
|
||
<p>We extend PyTorch gradient scaler to use FP32 gradients.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">94</span><span class="k">class</span> <span class="nc">GradScalerFP16</span><span class="p">(</span><span class="n">grad_scaler</span><span class="o">.</span><span class="n">GradScaler</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-20'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-20'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">101</span> <span class="k">def</span> <span class="nf">_unscale_grads_</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">Optimizer</span><span class="p">,</span> <span class="n">inv_scale</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">found_inf</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
|
||
<span class="lineno">102</span> <span class="n">allow_fp16</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-></span> <span class="n">Dict</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]:</span>
|
||
<span class="lineno">103</span> <span class="n">per_device_inv_scale</span> <span class="o">=</span> <span class="n">grad_scaler</span><span class="o">.</span><span class="n">_MultiDeviceReplicator</span><span class="p">(</span><span class="n">inv_scale</span><span class="p">)</span>
|
||
<span class="lineno">104</span> <span class="n">per_device_found_inf</span> <span class="o">=</span> <span class="n">grad_scaler</span><span class="o">.</span><span class="n">_MultiDeviceReplicator</span><span class="p">(</span><span class="n">found_inf</span><span class="p">)</span>
|
||
<span class="lineno">105</span>
|
||
<span class="lineno">106</span> <span class="n">per_device_and_dtype_grads</span> <span class="o">=</span> <span class="n">defaultdict</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">defaultdict</span><span class="p">(</span><span class="nb">list</span><span class="p">))</span> <span class="c1"># type: ignore[var-annotated]</span>
|
||
<span class="lineno">107</span>
|
||
<span class="lineno">108</span> <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-21'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-21'>#</a>
|
||
</div>
|
||
<p>Loop through parameters </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">110</span> <span class="k">for</span> <span class="n">group</span> <span class="ow">in</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span>
|
||
<span class="lineno">111</span> <span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">group</span><span class="p">[</span><span class="s2">"params"</span><span class="p">]:</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-22'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-22'>#</a>
|
||
</div>
|
||
<p>Skip non-trainable parameters </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">113</span> <span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="lineno">114</span> <span class="k">continue</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-23'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-23'>#</a>
|
||
</div>
|
||
<p>Not implemented for sparse tensors </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">116</span> <span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">is_sparse</span><span class="p">:</span>
|
||
<span class="lineno">117</span> <span class="k">raise</span> <span class="ne">NotImplementedError</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-24'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-24'>#</a>
|
||
</div>
|
||
<p>If we are using the <code class="highlight"><span></span><span class="n">AdamFP16</span></code>
|
||
optimizer set <code class="highlight"><span></span><span class="n">optimizer</span><span class="o">.</span><span class="n">grad_fp32</span><span class="p">[</span><span class="n">param</span><span class="p">]</span></code>
|
||
to the FP32 gradients </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">120</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">optimizer</span><span class="p">,</span> <span class="n">AdamFP16</span><span class="p">):</span>
|
||
<span class="lineno">121</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span>
|
||
<span class="lineno">122</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">grad_fp32</span><span class="p">[</span><span class="n">param</span><span class="p">]</span> <span class="o">=</span> <span class="n">grad</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-25'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-25'>#</a>
|
||
</div>
|
||
<p>Otherwise, do not convert the gradients to FP32 </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">124</span> <span class="k">else</span><span class="p">:</span>
|
||
<span class="lineno">125</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">grad</span>
|
||
<span class="lineno">126</span>
|
||
<span class="lineno">127</span> <span class="n">per_device_and_dtype_grads</span><span class="p">[</span><span class="n">grad</span><span class="o">.</span><span class="n">device</span><span class="p">][</span><span class="n">grad</span><span class="o">.</span><span class="n">dtype</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">grad</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-26'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-26'>#</a>
|
||
</div>
|
||
<p>Unscale all the gradients </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">130</span> <span class="k">for</span> <span class="n">device</span><span class="p">,</span> <span class="n">per_dtype_grads</span> <span class="ow">in</span> <span class="n">per_device_and_dtype_grads</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
|
||
<span class="lineno">131</span> <span class="k">for</span> <span class="n">grads</span> <span class="ow">in</span> <span class="n">per_dtype_grads</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
|
||
<span class="lineno">132</span> <span class="n">torch</span><span class="o">.</span><span class="n">_amp_foreach_non_finite_check_and_unscale_</span><span class="p">(</span><span class="n">grads</span><span class="p">,</span>
|
||
<span class="lineno">133</span> <span class="n">per_device_found_inf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">device</span><span class="p">),</span>
|
||
<span class="lineno">134</span> <span class="n">per_device_inv_scale</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">device</span><span class="p">))</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-27'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-27'>#</a>
|
||
</div>
|
||
<p> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">136</span> <span class="k">return</span> <span class="n">per_device_found_inf</span><span class="o">.</span><span class="n">_per_device_tensors</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='footer'>
|
||
<a href="https://labml.ai">labml.ai</a>
|
||
</div>
|
||
</div>
|
||
<script src=../interactive.js?v=1"></script>
|
||
<script>
|
||
function handleImages() {
|
||
var images = document.querySelectorAll('p>img')
|
||
|
||
for (var i = 0; i < images.length; ++i) {
|
||
handleImage(images[i])
|
||
}
|
||
}
|
||
|
||
function handleImage(img) {
|
||
img.parentElement.style.textAlign = 'center'
|
||
|
||
var modal = document.createElement('div')
|
||
modal.id = 'modal'
|
||
|
||
var modalContent = document.createElement('div')
|
||
modal.appendChild(modalContent)
|
||
|
||
var modalImage = document.createElement('img')
|
||
modalContent.appendChild(modalImage)
|
||
|
||
var span = document.createElement('span')
|
||
span.classList.add('close')
|
||
span.textContent = 'x'
|
||
modal.appendChild(span)
|
||
|
||
img.onclick = function () {
|
||
console.log('clicked')
|
||
document.body.appendChild(modal)
|
||
modalImage.src = img.src
|
||
}
|
||
|
||
span.onclick = function () {
|
||
document.body.removeChild(modal)
|
||
}
|
||
}
|
||
|
||
handleImages()
|
||
</script>
|
||
</body>
|
||
</html> |