mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 09:31:42 +08:00
724 lines
43 KiB
HTML
724 lines
43 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en">
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||
<meta name="description" content="A PyTorch implementation/tutorial of the paper "Patches Are All You Need?""/>
|
||
|
||
<meta name="twitter:card" content="summary"/>
|
||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta name="twitter:title" content="Patches Are All You Need? (ConvMixer)"/>
|
||
<meta name="twitter:description" content="A PyTorch implementation/tutorial of the paper "Patches Are All You Need?""/>
|
||
<meta name="twitter:site" content="@labmlai"/>
|
||
<meta name="twitter:creator" content="@labmlai"/>
|
||
|
||
<meta property="og:url" content="https://nn.labml.ai/conv_mixer/index.html"/>
|
||
<meta property="og:title" content="Patches Are All You Need? (ConvMixer)"/>
|
||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||
<meta property="og:site_name" content="Patches Are All You Need? (ConvMixer)"/>
|
||
<meta property="og:type" content="object"/>
|
||
<meta property="og:title" content="Patches Are All You Need? (ConvMixer)"/>
|
||
<meta property="og:description" content="A PyTorch implementation/tutorial of the paper "Patches Are All You Need?""/>
|
||
|
||
<title>Patches Are All You Need? (ConvMixer)</title>
|
||
<link rel="shortcut icon" href="/icon.png"/>
|
||
<link rel="stylesheet" href="../pylit.css?v=1">
|
||
<link rel="canonical" href="https://nn.labml.ai/conv_mixer/index.html"/>
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-4V3HC8HBLH');
|
||
</script>
|
||
</head>
|
||
<body>
|
||
<div id='container'>
|
||
<div id="background"></div>
|
||
<div class='section'>
|
||
<div class='docs'>
|
||
<p>
|
||
<a class="parent" href="/">home</a>
|
||
<a class="parent" href="index.html">conv_mixer</a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
|
||
<img alt="Github"
|
||
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
|
||
style="max-width:100%;"/></a>
|
||
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
|
||
<img alt="Twitter"
|
||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||
style="max-width:100%;"/></a>
|
||
</p>
|
||
<p>
|
||
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/conv_mixer/__init__.py" target="_blank">
|
||
View code on Github</a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-0'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-0'>#</a>
|
||
</div>
|
||
<h1>Patches Are All You Need? (ConvMixer)</h1>
|
||
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of the paper <a href="https://arxiv.org/abs/2201.09792">Patches Are All You Need?</a>.</p>
|
||
<p><img alt="ConvMixer diagram from the paper" src="conv_mixer.png"></p>
|
||
<p>ConvMixer is Similar to <a href="../transformers/mlp_mixer/index.html">MLP-Mixer</a>. MLP-Mixer separates mixing of spatial and channel dimensions, by applying an MLP across spatial dimension and then an MLP across the channel dimension (spatial MLP replaces the <a href="../transformers/vit/index.html">ViT</a> attention and channel MLP is the <a href="../transformers/feed_forward.html">FFN</a> of ViT).</p>
|
||
<p>ConvMixer uses a <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord coloredeq eqa" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style="">1</span></span></span></span></span></span> convolution for channel mixing and a depth-wise convolution for spatial mixing. Since it's a convolution instead of a full MLP across the space, it mixes only the nearby batches in contrast to ViT or MLP-Mixer. Also, the MLP-mixer uses MLPs of two layers for each mixing and ConvMixer uses a single layer for each mixing.</p>
|
||
<p>The paper recommends removing the residual connection across the channel mixing (point-wise convolution) and having only a residual connection over the spatial mixing (depth-wise convolution). They also use <a href="../normalization/batch_norm/index.html">Batch normalization</a> instead of <a href="../normalization/layer_norm/index.html">Layer normalization</a>.</p>
|
||
<p>Here's <a href="experiment.html">an experiment</a> that trains ConvMixer on CIFAR-10.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">36</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
|
||
<span class="lineno">37</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||
<span class="lineno">38</span>
|
||
<span class="lineno">39</span><span class="kn">from</span> <span class="nn">labml_nn.utils</span> <span class="kn">import</span> <span class="n">clone_module_list</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-1'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-1'>#</a>
|
||
</div>
|
||
<p> <a id="ConvMixerLayer"></a></p>
|
||
<h2>ConvMixer layer</h2>
|
||
<p>This is a single ConvMixer layer. The model will have a series of these.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">42</span><span class="k">class</span> <span class="nc">ConvMixerLayer</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-2'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-2'>#</a>
|
||
</div>
|
||
<ul><li><code class="highlight"><span></span><span class="n">d_model</span></code>
|
||
is the number of channels in patch embeddings, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord coloredeq eqd" style=""><span class="mord mathnormal" style="">h</span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">kernel_size</span></code>
|
||
is the size of the kernel of spatial convolution, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span></span></li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">51</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-3'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-3'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">56</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-4'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-4'>#</a>
|
||
</div>
|
||
<p>Depth-wise convolution is separate convolution for each channel. We do this with a convolution layer with the number of groups equal to the number of channels. So that each channel is it's own group. </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">60</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth_wise_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span>
|
||
<span class="lineno">61</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span>
|
||
<span class="lineno">62</span> <span class="n">groups</span><span class="o">=</span><span class="n">d_model</span><span class="p">,</span>
|
||
<span class="lineno">63</span> <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">kernel_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-5'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-5'>#</a>
|
||
</div>
|
||
<p>Activation after depth-wise convolution </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">65</span> <span class="bp">self</span><span class="o">.</span><span class="n">act1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GELU</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-6'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-6'>#</a>
|
||
</div>
|
||
<p>Normalization after depth-wise convolution </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">67</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-7'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-7'>#</a>
|
||
</div>
|
||
<p>Point-wise convolution is a <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord coloredeq eqa" style=""><span class="mord" style="">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style="">1</span></span></span></span></span></span> convolution. i.e. a linear transformation of patch embeddings </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">71</span> <span class="bp">self</span><span class="o">.</span><span class="n">point_wise_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-8'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-8'>#</a>
|
||
</div>
|
||
<p>Activation after point-wise convolution </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">73</span> <span class="bp">self</span><span class="o">.</span><span class="n">act2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GELU</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-9'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-9'>#</a>
|
||
</div>
|
||
<p>Normalization after point-wise convolution </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">75</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-10'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-10'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">77</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-11'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-11'>#</a>
|
||
</div>
|
||
<p>For the residual connection around the depth-wise convolution </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">79</span> <span class="n">residual</span> <span class="o">=</span> <span class="n">x</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-12'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-12'>#</a>
|
||
</div>
|
||
<p>Depth-wise convolution, activation and normalization </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">82</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth_wise_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="lineno">83</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="lineno">84</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-13'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-13'>#</a>
|
||
</div>
|
||
<p>Add residual connection </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">87</span> <span class="n">x</span> <span class="o">+=</span> <span class="n">residual</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-14'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-14'>#</a>
|
||
</div>
|
||
<p>Point-wise convolution, activation and normalization </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">90</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">point_wise_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="lineno">91</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="lineno">92</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-15'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-15'>#</a>
|
||
</div>
|
||
<p> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">95</span> <span class="k">return</span> <span class="n">x</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-16'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-16'>#</a>
|
||
</div>
|
||
<p> <a id="PatchEmbeddings"></a></p>
|
||
<h2>Get patch embeddings</h2>
|
||
<p>This splits the image into patches of size <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.7777700000000001em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqf" style=""><span class="mord mathnormal" style="">p</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqf" style=""><span class="mord mathnormal" style="">p</span></span></span></span></span></span> and gives an embedding for each patch.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">98</span><span class="k">class</span> <span class="nc">PatchEmbeddings</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-17'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-17'>#</a>
|
||
</div>
|
||
<ul><li><code class="highlight"><span></span><span class="n">d_model</span></code>
|
||
is the number of channels in patch embeddings <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord coloredeq eqd" style=""><span class="mord mathnormal" style="">h</span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">patch_size</span></code>
|
||
is the size of the patch, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqf" style=""><span class="mord mathnormal" style="">p</span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">in_channels</span></code>
|
||
is the number of channels in the input image (3 for rgb)</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">107</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-18'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-18'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">113</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-19'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-19'>#</a>
|
||
</div>
|
||
<p>We create a convolution layer with a kernel size and and stride length equal to patch size. This is equivalent to splitting the image into patches and doing a linear transformation on each patch. </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">118</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">patch_size</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-20'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-20'>#</a>
|
||
</div>
|
||
<p>Activation function </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">120</span> <span class="bp">self</span><span class="o">.</span><span class="n">act</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GELU</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-21'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-21'>#</a>
|
||
</div>
|
||
<p>Batch normalization </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">122</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-22'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-22'>#</a>
|
||
</div>
|
||
<ul><li><code class="highlight"><span></span><span class="n">x</span></code>
|
||
is the input image of shape <code class="highlight"><span></span><span class="p">[</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">]</span></code>
|
||
</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">124</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-23'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-23'>#</a>
|
||
</div>
|
||
<p>Apply convolution layer </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">129</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-24'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-24'>#</a>
|
||
</div>
|
||
<p>Activation and normalization </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">131</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="lineno">132</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-25'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-25'>#</a>
|
||
</div>
|
||
<p> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">135</span> <span class="k">return</span> <span class="n">x</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-26'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-26'>#</a>
|
||
</div>
|
||
<p> <a id="ClassificationHead"></a></p>
|
||
<h2>Classification Head</h2>
|
||
<p>They do average pooling (taking the mean of all patch embeddings) and a final linear transformation to predict the log-probabilities of the image classes.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">138</span><span class="k">class</span> <span class="nc">ClassificationHead</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-27'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-27'>#</a>
|
||
</div>
|
||
<ul><li><code class="highlight"><span></span><span class="n">d_model</span></code>
|
||
is the number of channels in patch embeddings, <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord coloredeq eqd" style=""><span class="mord mathnormal" style="">h</span></span></span></span></span></span> </li>
|
||
<li><code class="highlight"><span></span><span class="n">n_classes</span></code>
|
||
is the number of classes in the classification task</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-28'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-28'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">153</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-29'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-29'>#</a>
|
||
</div>
|
||
<p>Average Pool </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">155</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-30'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-30'>#</a>
|
||
</div>
|
||
<p>Linear layer </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">157</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_classes</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-31'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-31'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">159</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-32'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-32'>#</a>
|
||
</div>
|
||
<p>Average pooling </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">161</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-33'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-33'>#</a>
|
||
</div>
|
||
<p>Get the embedding, <code class="highlight"><span></span><span class="n">x</span></code>
|
||
will have shape <code class="highlight"><span></span><span class="p">[</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span></code>
|
||
</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">163</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-34'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-34'>#</a>
|
||
</div>
|
||
<p>Linear layer </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">165</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-35'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-35'>#</a>
|
||
</div>
|
||
<p> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">168</span> <span class="k">return</span> <span class="n">x</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-36'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-36'>#</a>
|
||
</div>
|
||
<h2>ConvMixer</h2>
|
||
<p>This combines the patch embeddings block, a number of ConvMixer layers and a classification head.</p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">171</span><span class="k">class</span> <span class="nc">ConvMixer</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-37'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-37'>#</a>
|
||
</div>
|
||
<ul><li><code class="highlight"><span></span><span class="n">conv_mixer_layer</span></code>
|
||
is a copy of a single <a href="#ConvMixerLayer">ConvMixer layer</a>. We make copies of it to make ConvMixer with <code class="highlight"><span></span><span class="n">n_layers</span></code>
|
||
. </li>
|
||
<li><code class="highlight"><span></span><span class="n">n_layers</span></code>
|
||
is the number of ConvMixer layers (or depth), <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">d</span></span></span></span></span>. </li>
|
||
<li><code class="highlight"><span></span><span class="n">patch_emb</span></code>
|
||
is the <a href="#PatchEmbeddings">patch embeddings layer</a>. </li>
|
||
<li><code class="highlight"><span></span><span class="n">classification</span></code>
|
||
is the <a href="#ClassificationHead">classification head</a>.</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">178</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">conv_mixer_layer</span><span class="p">:</span> <span class="n">ConvMixerLayer</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
|
||
<span class="lineno">179</span> <span class="n">patch_emb</span><span class="p">:</span> <span class="n">PatchEmbeddings</span><span class="p">,</span>
|
||
<span class="lineno">180</span> <span class="n">classification</span><span class="p">:</span> <span class="n">ClassificationHead</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-38'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-38'>#</a>
|
||
</div>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">188</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-39'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-39'>#</a>
|
||
</div>
|
||
<p>Patch embeddings </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">190</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_emb</span> <span class="o">=</span> <span class="n">patch_emb</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-40'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-40'>#</a>
|
||
</div>
|
||
<p>Classification head </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">192</span> <span class="bp">self</span><span class="o">.</span><span class="n">classification</span> <span class="o">=</span> <span class="n">classification</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-41'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-41'>#</a>
|
||
</div>
|
||
<p>Make copies of the <a href="#ConvMixerLayer">ConvMixer layer</a> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">194</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_mixer_layers</span> <span class="o">=</span> <span class="n">clone_module_list</span><span class="p">(</span><span class="n">conv_mixer_layer</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-42'>
|
||
<div class='docs doc-strings'>
|
||
<div class='section-link'>
|
||
<a href='#section-42'>#</a>
|
||
</div>
|
||
<ul><li><code class="highlight"><span></span><span class="n">x</span></code>
|
||
is the input image of shape <code class="highlight"><span></span><span class="p">[</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">]</span></code>
|
||
</li></ul>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">196</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-43'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-43'>#</a>
|
||
</div>
|
||
<p>Get patch embeddings. This gives a tensor of shape <code class="highlight"><span></span><span class="p">[</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">height</span> <span class="o">/</span> <span class="n">patch_size</span><span class="p">,</span> <span class="n">width</span> <span class="o">/</span> <span class="n">patch_size</span><span class="p">]</span></code>
|
||
. </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">201</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_emb</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-44'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-44'>#</a>
|
||
</div>
|
||
<p>Pass through <a href="#ConvMixerLayer">ConvMixer layers</a> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">204</span> <span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_mixer_layers</span><span class="p">:</span>
|
||
<span class="lineno">205</span> <span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-45'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-45'>#</a>
|
||
</div>
|
||
<p>Classification head, to get logits </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">208</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classification</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='section' id='section-46'>
|
||
<div class='docs'>
|
||
<div class='section-link'>
|
||
<a href='#section-46'>#</a>
|
||
</div>
|
||
<p> </p>
|
||
|
||
</div>
|
||
<div class='code'>
|
||
<div class="highlight"><pre><span class="lineno">211</span> <span class="k">return</span> <span class="n">x</span></pre></div>
|
||
</div>
|
||
</div>
|
||
<div class='footer'>
|
||
<a href="https://labml.ai">labml.ai</a>
|
||
</div>
|
||
</div>
|
||
<script src=../interactive.js?v=1"></script>
|
||
<script>
|
||
function handleImages() {
|
||
var images = document.querySelectorAll('p>img')
|
||
|
||
for (var i = 0; i < images.length; ++i) {
|
||
handleImage(images[i])
|
||
}
|
||
}
|
||
|
||
function handleImage(img) {
|
||
img.parentElement.style.textAlign = 'center'
|
||
|
||
var modal = document.createElement('div')
|
||
modal.id = 'modal'
|
||
|
||
var modalContent = document.createElement('div')
|
||
modal.appendChild(modalContent)
|
||
|
||
var modalImage = document.createElement('img')
|
||
modalContent.appendChild(modalImage)
|
||
|
||
var span = document.createElement('span')
|
||
span.classList.add('close')
|
||
span.textContent = 'x'
|
||
modal.appendChild(span)
|
||
|
||
img.onclick = function () {
|
||
console.log('clicked')
|
||
document.body.appendChild(modal)
|
||
modalImage.src = img.src
|
||
}
|
||
|
||
span.onclick = function () {
|
||
document.body.removeChild(modal)
|
||
}
|
||
}
|
||
|
||
handleImages()
|
||
</script>
|
||
</body>
|
||
</html> |