""" --- title: WGAN experiment with MNIST summary: This experiment generates MNIST images using convolutional neural network. --- # WGAN experiment with MNIST """ from labml import experiment from labml.configs import calculate # Import configurations from [DCGAN experiment](../dcgan/index.html) from labml_nn.gan.dcgan import Configs # Import [Wasserstein GAN losses](./index.html) from labml_nn.gan.wasserstein import GeneratorLoss, DiscriminatorLoss # Set configurations options for Wasserstein GAN losses calculate(Configs.generator_loss, 'wasserstein', lambda c: GeneratorLoss()) calculate(Configs.discriminator_loss, 'wasserstein', lambda c: DiscriminatorLoss()) def main(): # Create configs object conf = Configs() # Create experiment experiment.create(name='mnist_wassertein_dcgan', comment='test') # Override configurations experiment.configs(conf, { 'discriminator': 'cnn', 'generator': 'cnn', 'label_smoothing': 0.01, 'generator_loss': 'wasserstein', 'discriminator_loss': 'wasserstein', }) # Start the experiment and run training loop with experiment.start(): conf.run() if __name__ == '__main__': main()