This is the code to generate images and create interpolations between given images.
14import numpy as np
15import torch
16from matplotlib import pyplot as plt
17from torchvision.transforms.functional import to_pil_image, resize
18
19from labml import experiment, monit
20from labml_nn.diffusion.ddpm import DenoiseDiffusion, gather
21from labml_nn.diffusion.ddpm.experiment import Configs24class Sampler:diffusion
is the DenoiseDiffusion
instance image_channels
is the number of channels in the image image_size
is the image size device
is the device of the model29 def __init__(self, diffusion: DenoiseDiffusion, image_channels: int, image_size: int, device: torch.device):36 self.device = device
37 self.image_size = image_size
38 self.image_channels = image_channels
39 self.diffusion = diffusion42 self.n_steps = diffusion.n_steps44 self.eps_model = diffusion.eps_model46 self.beta = diffusion.beta48 self.alpha = diffusion.alpha50 self.alpha_bar = diffusion.alpha_bar52 alpha_bar_tm1 = torch.cat([self.alpha_bar.new_ones((1,)), self.alpha_bar[:-1]])64 self.beta_tilde = self.beta * (1 - alpha_bar_tm1) / (1 - self.alpha_bar)66 self.mu_tilde_coef1 = self.beta * (alpha_bar_tm1 ** 0.5) / (1 - self.alpha_bar)68 self.mu_tilde_coef2 = (self.alpha ** 0.5) * (1 - alpha_bar_tm1) / (1 - self.alpha_bar)70 self.sigma2 = self.betaHelper function to display an image
72 def show_image(self, img, title=""):74 img = img.clip(0, 1)
75 img = img.cpu().numpy()
76 plt.imshow(img.transpose(1, 2, 0))
77 plt.title(title)
78 plt.show()Helper function to create a video
80 def make_video(self, frames, path="video.mp4"):82 import imageio20 second video
84 writer = imageio.get_writer(path, fps=len(frames) // 20)Add each image
86 for f in frames:
87 f = f.clip(0, 1)
88 f = to_pil_image(resize(f, [368, 368]))
89 writer.append_data(np.array(f))91 writer.close()We sample an image step-by-step using and at each step show the estimate
93 def sample_animation(self, n_frames: int = 1000, create_video: bool = True):104 xt = torch.randn([1, self.image_channels, self.image_size, self.image_size], device=self.device)Interval to log
107 interval = self.n_steps // n_framesFrames for video
109 frames = []Sample steps
111 for t_inv in monit.iterate('Denoise', self.n_steps):113 t_ = self.n_steps - t_inv - 1in a tensor
115 t = xt.new_full((1,), t_, dtype=torch.long)117 eps_theta = self.eps_model(xt, t)
118 if t_ % interval == 0:Get and add to frames
120 x0 = self.p_x0(xt, t, eps_theta)
121 frames.append(x0[0])
122 if not create_video:
123 self.show_image(x0[0], f"{t_}")Sample from
125 xt = self.p_sample(xt, t, eps_theta)Make video
128 if create_video:
129 self.make_video(frames)131 def interpolate(self, x1: torch.Tensor, x2: torch.Tensor, lambda_: float, t_: int = 100):Number of samples
150 n_samples = x1.shape[0]tensor
152 t = torch.full((n_samples,), t_, device=self.device)154 xt = (1 - lambda_) * self.diffusion.q_sample(x1, t) + lambda_ * self.diffusion.q_sample(x2, t)157 return self._sample_x0(xt, t_)x1
is x2
is n_frames
is the number of frames for the image t_
is create_video
specifies whether to make a video or to show each frame159 def interpolate_animate(self, x1: torch.Tensor, x2: torch.Tensor, n_frames: int = 100, t_: int = 100,
160 create_video=True):Show original images
172 self.show_image(x1, "x1")
173 self.show_image(x2, "x2")Add batch dimension
175 x1 = x1[None, :, :, :]
176 x2 = x2[None, :, :, :]tensor
178 t = torch.full((1,), t_, device=self.device)180 x1t = self.diffusion.q_sample(x1, t)182 x2t = self.diffusion.q_sample(x2, t)
183
184 frames = []Get frames with different
186 for i in monit.iterate('Interpolate', n_frames + 1, is_children_silent=True):188 lambda_ = i / n_frames190 xt = (1 - lambda_) * x1t + lambda_ * x2t192 x0 = self._sample_x0(xt, t_)Add to frames
194 frames.append(x0[0])Show frame
196 if not create_video:
197 self.show_image(x0[0], f"{lambda_ :.2f}")Make video
200 if create_video:
201 self.make_video(frames)203 def _sample_x0(self, xt: torch.Tensor, n_steps: int):Number of sampels
212 n_samples = xt.shape[0]Iterate until steps
214 for t_ in monit.iterate('Denoise', n_steps):
215 t = n_steps - t_ - 1Sample from
217 xt = self.diffusion.p_sample(xt, xt.new_full((n_samples,), t, dtype=torch.long))Return
220 return xt222 def sample(self, n_samples: int = 16):227 xt = torch.randn([n_samples, self.image_channels, self.image_size, self.image_size], device=self.device)230 x0 = self._sample_x0(xt, self.n_steps)Show images
233 for i in range(n_samples):
234 self.show_image(x0[i])236 def p_sample(self, xt: torch.Tensor, t: torch.Tensor, eps_theta: torch.Tensor):251 alpha = gather(self.alpha, t)253 eps_coef = (1 - alpha) / (1 - alpha_bar) ** .5256 mean = 1 / (alpha ** 0.5) * (xt - eps_coef * eps_theta)258 var = gather(self.sigma2, t)261 eps = torch.randn(xt.shape, device=xt.device)Sample
263 return mean + (var ** .5) * eps265 def p_x0(self, xt: torch.Tensor, t: torch.Tensor, eps: torch.Tensor):277 return (xt - (1 - alpha_bar) ** 0.5 * eps) / (alpha_bar ** 0.5)Generate samples
280def main():Training experiment run UUID
284 run_uuid = "a44333ea251411ec8007d1a1762ed686"Start an evaluation
287 experiment.evaluate()Create configs
290 configs = Configs()Load custom configuration of the training run
292 configs_dict = experiment.load_configs(run_uuid)Set configurations
294 experiment.configs(configs, configs_dict)Initialize
297 configs.init()Set PyTorch modules for saving and loading
300 experiment.add_pytorch_models({'eps_model': configs.eps_model})Load training experiment
303 experiment.load(run_uuid)Create sampler
306 sampler = Sampler(diffusion=configs.diffusion,
307 image_channels=configs.image_channels,
308 image_size=configs.image_size,
309 device=configs.device)Start evaluation
312 with experiment.start():No gradients
314 with torch.no_grad():Sample an image with an denoising animation
316 sampler.sample_animation()
317
318 if False:Get some images fro data
320 data = next(iter(configs.data_loader)).to(configs.device)Create an interpolation animation
323 sampler.interpolate_animate(data[0], data[1])327if __name__ == '__main__':
328 main()