This is an annotated PyTorch experiment to train a ALiBi model.
This is based on our GPT model.
16import torch
17from torch.utils.data import DataLoader
18
19from labml import experiment, tracker
20from labml.configs import option, calculate
21from labml_helpers.datasets.text import SequentialUnBatchedDataset
22from labml_nn.transformers.alibi import AlibiMultiHeadAttention
23from labml_nn.experiments.nlp_autoregression import transpose_batch
24from labml_nn.transformers import TransformerConfigs
25from labml_nn.transformers.gpt import Configs as GPTConfigs
28class Configs(GPTConfigs):
ALiBi based transformer (defined below)
36 transformer: TransformerConfigs = 'GPT_ALiBi'
Longer validation set
38 valid_seq_len: int = 128
39 valid_loader = 'shuffled_longer_valid_loader'
Log losses at the initial and final tokens
41 def other_metrics(self, output: torch.Tensor, target: torch.Tensor):
If there are more tokens that the training sequence length (during validation),
46 if self.seq_len < output.shape[0]:
Log the loss at training sequence length
48 tracker.add(f'loss.{self.seq_len - 1}.', self.loss_func(output[self.seq_len - 1], target[self.seq_len - 1]))
Log the loss at the first token
50 tracker.add(f'loss.0.', self.loss_func(output[0], target[0]))
Log the loss at the final token
52 tracker.add(f'loss.{int(output.shape[0]) - 1}.', self.loss_func(output[-1], target[-1]))
Create an ALiBi attention module
55def _alibi_mha(c: TransformerConfigs):
59 return AlibiMultiHeadAttention(c.n_heads, c.d_model, dropout_prob=c.dropout)
Set all attention mechanisms to ALiBi
63calculate(TransformerConfigs.encoder_attn, 'alibi_mha', _alibi_mha)
64calculate(TransformerConfigs.decoder_attn, 'alibi_mha', _alibi_mha)
65calculate(TransformerConfigs.decoder_mem_attn, 'alibi_mha', _alibi_mha)
Shuffled validation data loader with valid_seq_len
sequence length
68@option(Configs.valid_loader)
69def shuffled_longer_valid_loader(c: Configs):
73 return DataLoader(SequentialUnBatchedDataset(text=c.text.valid,
74 dataset=c.text,
75 seq_len=c.valid_seq_len),
76 batch_size=c.batch_size,
77 collate_fn=transpose_batch,
78 shuffle=True)
81@option(Configs.transformer, 'GPT_ALiBi')
82def _transformer_configs(c: Configs):
We use our configurable transformer implementation
89 conf = TransformerConfigs()
Set the vocabulary sizes for embeddings and generating logits
91 conf.n_src_vocab = c.n_tokens
92 conf.n_tgt_vocab = c.n_tokens
GPT uses GELU activation for position wise feedforward
94 conf.ffn.activation = 'GELU'
ALiBi doesn't use positional embeddings
97 conf.src_embed = 'no_pos'
98 conf.tgt_embed = 'no_pos'
Set all attention mechanisms to ALiBi
101 conf.encoder_attn = 'alibi_mha'
102 conf.decoder_attn = 'alibi_mha'
103 conf.decoder_mem_attn = 'alibi_mha'
106 return conf
109def main():
Create experiment
111 experiment.create(name="gpt_alibi")
Create configs
113 conf = Configs()
Override configurations
115 experiment.configs(conf, {
Use character level tokenizer
117 'tokenizer': 'character',
Prompt separator is blank
119 'prompt_separator': '',
Starting prompt for sampling
121 'prompt': 'It is ',
Use Tiny Shakespeare dataset
123 'text': 'tiny_shakespeare',
'text': 'tiny_shakespeare_no_split',
Use a context size of
127 'seq_len': 64,
Use a context size of
129 'valid_seq_len': 80,
Train for epochs
131 'epochs': 128,
Batch size
133 'batch_size': 128,
Switch between training and validation for times per epoch
136 'inner_iterations': 10,
Transformer configurations
139 'transformer.d_model': 128,
140 'transformer.ffn.d_ff': 512,
141 'transformer.n_heads': 8,
142 'transformer.n_layers': 4,
143 'transformer.dropout': 0.1,
144 })
Set models for saving and loading
147 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
150 with experiment.start():
Run training
152 conf.run()
156if __name__ == '__main__':
157 main()