""" # [labml.ai Annotated PyTorch Paper Implementations](index.html) This is a collection of simple PyTorch implementations of neural networks and related algorithms. [These implementations](https://github.com/labmlai/annotated_deep_learning_paper_implementations) are documented with explanations, and the [website](index.html) renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better. ![Screenshot](dqn-light.png) We are actively maintaining this repo and adding new implementations. [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai) for updates. ## Paper Implementations #### ✨ [Transformers](transformers/index.html) * [Multi-headed attention](transformers/mha.html) * [Transformer building blocks](transformers/models.html) * [Transformer XL](transformers/xl/index.html) * [Relative multi-headed attention](transformers/xl/relative_mha.html) * [Rotary Positional Embeddings](transformers/rope/index.html) * [RETRO](transformers/retro/index.html) * [Compressive Transformer](transformers/compressive/index.html) * [GPT Architecture](transformers/gpt/index.html) * [GLU Variants](transformers/glu_variants/simple.html) * [kNN-LM: Generalization through Memorization](transformers/knn/index.html) * [Feedback Transformer](transformers/feedback/index.html) * [Switch Transformer](transformers/switch/index.html) * [Fast Weights Transformer](transformers/fast_weights/index.html) * [FNet](transformers/fnet/index.html) * [Attention Free Transformer](transformers/aft/index.html) * [Masked Language Model](transformers/mlm/index.html) * [MLP-Mixer: An all-MLP Architecture for Vision](transformers/mlp_mixer/index.html) * [Pay Attention to MLPs (gMLP)](transformers/gmlp/index.html) * [Vision Transformer (ViT)](transformers/vit/index.html) * [Primer EZ](transformers/primer_ez/index.html) * [Hourglass](transformers/hour_glass/index.html) #### ✨ [Recurrent Highway Networks](recurrent_highway_networks/index.html) #### ✨ [LSTM](lstm/index.html) #### ✨ [HyperNetworks - HyperLSTM](hypernetworks/hyper_lstm.html) #### ✨ [ResNet](resnet/index.html) #### ✨ [ConvMixer](conv_mixer/index.html) #### ✨ [Capsule Networks](capsule_networks/index.html) #### ✨ [Generative Adversarial Networks](gan/index.html) * [Original GAN](gan/original/index.html) * [GAN with deep convolutional network](gan/dcgan/index.html) * [Cycle GAN](gan/cycle_gan/index.html) * [Wasserstein GAN](gan/wasserstein/index.html) * [Wasserstein GAN with Gradient Penalty](gan/wasserstein/gradient_penalty/index.html) * [StyleGAN 2](gan/stylegan/index.html) #### ✨ [Diffusion models](diffusion/index.html) * [Denoising Diffusion Probabilistic Models (DDPM)](diffusion/ddpm/index.html) #### ✨ [Sketch RNN](sketch_rnn/index.html) #### ✨ Graph Neural Networks * [Graph Attention Networks (GAT)](graphs/gat/index.html) * [Graph Attention Networks v2 (GATv2)](graphs/gatv2/index.html) #### ✨ [Counterfactual Regret Minimization (CFR)](cfr/index.html) Solving games with incomplete information such as poker with CFR. * [Kuhn Poker](cfr/kuhn/index.html) #### ✨ [Reinforcement Learning](rl/index.html) * [Proximal Policy Optimization](rl/ppo/index.html) with [Generalized Advantage Estimation](rl/ppo/gae.html) * [Deep Q Networks](rl/dqn/index.html) with with [Dueling Network](rl/dqn/model.html), [Prioritized Replay](rl/dqn/replay_buffer.html) and Double Q Network. #### ✨ [Optimizers](optimizers/index.html) * [Adam](optimizers/adam.html) * [AMSGrad](optimizers/amsgrad.html) * [Adam Optimizer with warmup](optimizers/adam_warmup.html) * [Noam Optimizer](optimizers/noam.html) * [Rectified Adam Optimizer](optimizers/radam.html) * [AdaBelief Optimizer](optimizers/ada_belief.html) #### ✨ [Normalization Layers](normalization/index.html) * [Batch Normalization](normalization/batch_norm/index.html) * [Layer Normalization](normalization/layer_norm/index.html) * [Instance Normalization](normalization/instance_norm/index.html) * [Group Normalization](normalization/group_norm/index.html) * [Weight Standardization](normalization/weight_standardization/index.html) * [Batch-Channel Normalization](normalization/batch_channel_norm/index.html) * [DeepNorm](normalization/deep_norm/index.html) #### ✨ [Distillation](distillation/index.html) #### ✨ [Adaptive Computation](adaptive_computation/index.html) * [PonderNet](adaptive_computation/ponder_net/index.html) #### ✨ [Uncertainty](uncertainty/index.html) * [Evidential Deep Learning to Quantify Classification Uncertainty](uncertainty/evidence/index.html) #### ✨ [Activations](activations/index.html) * [Fuzzy Tiling Activations](activations/fta/index.html) ## Highlighted Research Paper PDFs * [Autoregressive Search Engines: Generating Substrings as Document Identifiers](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.10628.pdf) * [Training Compute-Optimal Large Language Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.15556.pdf) * [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1910.02054.pdf) * [PaLM: Scaling Language Modeling with Pathways](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.02311.pdf) * [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/dall-e-2.pdf) * [STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.14465.pdf) * [Improving language models by retrieving from trillions of tokens](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2112.04426.pdf) * [NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2003.08934.pdf) * [Attention Is All You Need](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1706.03762.pdf) * [Denoising Diffusion Probabilistic Models](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2006.11239.pdf) * [Primer: Searching for Efficient Transformers for Language Modeling](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.08668.pdf) * [On First-Order Meta-Learning Algorithms](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1803.02999.pdf) * [Learning Transferable Visual Models From Natural Language Supervision](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2103.00020.pdf) * [The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.02869.pdf) * [Meta-Gradient Reinforcement Learning](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1805.09801.pdf) * [ETA Prediction with Graph Neural Networks in Google Maps](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/google_maps_eta.pdf) * [PonderNet: Learning to Ponder](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/ponder_net.pdf) * [Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/muzero.pdf) * [GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/gans_n_roses.pdf) * [An Image is Worth 16X16 Word: Transformers for Image Recognition at Scale](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/vit.pdf) * [Deep Residual Learning for Image Recognition](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/resnet.pdf) * [Distilling the Knowledge in a Neural Network](https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/distillation.pdf) ### Installation ```bash pip install labml-nn ``` ### Citing LabML If you use this for academic research, please cite it using the following BibTeX entry. ```bibtex @misc{labml, author = {Varuna Jayasiri, Nipun Wijerathne}, title = {labml.ai Annotated Paper Implementations}, year = {2020}, url = {}, } ``` """