This is an annotated PyTorch experiment to train a AFT model.
This is based on general training loop and configurations for auto-regressive NLP task.
14import torch
15from labml import experiment
16from labml.configs import option
17from labml_nn.experiments.nlp_autoregression import NLPAutoRegressionConfigs
18from labml_nn.transformers import TransformerConfigs, Encoder
19from labml_nn.transformers.utils import subsequent_mask
20from torch import nnThis consists of a token embedding layer, transformer encoder, and a final linear layer that gives token logits.
23class AutoregressiveTransformer(nn.Module):encoder
 is the transformer Encoder src_embed
 is the token embedding module (with positional encodings) generator
 is the final fully connected layer that gives the logits.31    def __init__(self, encoder: Encoder, src_embed: nn.Module, generator: nn.Module):38        super().__init__()
39        self.src_embed = src_embed
40        self.encoder = encoder
41        self.generator = generatorThe mask will be initialized on the first call
44        self.mask = None46    def forward(self, x: torch.Tensor):Create subsequent mask if mask is not initialized or if the size of the mask is different
49        if self.mask is None or self.mask.size(0) != len(x):Subsequent mask, will mask out tokens from seeing future tokens
51            self.mask = subsequent_mask(len(x)).to(x.device)Get the token embeddings with positional encodings
54        x = self.src_embed(x)Transformer encoder
56        x = self.encoder(x, self.mask)Get logits
58        x = self.generator(x)Return results (second value is for state, since our trainer is used with RNNs also)
62        return x, None65class Configs(NLPAutoRegressionConfigs):GPT model
74    model: AutoregressiveTransformerTransformer
76    transformer: TransformerConfigs
77
78    local_window_size: int = 3281@option(Configs.transformer, 'Transformer')
82def _transformer_configs(c: Configs):We use our configurable transformer implementation
89    conf = TransformerConfigs()Set the vocabulary sizes for embeddings and generating logits
91    conf.n_src_vocab = c.n_tokens
92    conf.n_tgt_vocab = c.n_tokensSet the embedding size
94    conf.d_model = c.d_modelReplace self-attention with an AFT Local Module
96    from labml_nn.transformers.aft import AFTLocal
97    conf.encoder_attn = AFTLocal(c.d_model, c.seq_len, c.local_window_size)100    return confCreate an auto-regressive model
103@option(Configs.model)
104def _model(c: Configs):108    m = AutoregressiveTransformer(c.transformer.encoder,
109                                  c.transformer.src_embed,
110                                  c.transformer.generator).to(c.device)
111
112    return m115def main():Create experiment
117    experiment.create(name="aft")Create configs
119    conf = Configs()Override configurations
121    experiment.configs(conf, {Use character level tokenizer
123        'tokenizer': 'character',Prompt separator is blank
125        'prompt_separator': '',Starting prompt for sampling
127        'prompt': 'It is ',Use Tiny Shakespeare dataset
129        'text': 'tiny_shakespeare',Use a context size of
132        'seq_len': 256,Train for epochs
134        'epochs': 128,Batch size
136        'batch_size': 32,Switch between training and validation for times per epoch
139        'inner_iterations': 10,Embedding size
142        'd_model': 128,FFN hidden dimension size
144        'transformer.ffn.d_ff': 256,Optimizer
147        'optimizer.optimizer': 'Noam',
148        'optimizer.learning_rate': 1.,
149    })Set models for saving and loading
152    experiment.add_pytorch_models({'model': conf.model})Start the experiment
155    with experiment.start():Run training
157        conf.run()161if __name__ == '__main__':
162    main()