9from labml import experiment
10
11from labml.configs import calculateImport configurations from DCGAN experiment
13from labml_nn.gan.dcgan import ConfigsImport Wasserstein GAN losses
16from labml_nn.gan.wasserstein import GeneratorLoss, DiscriminatorLossSet configurations options for Wasserstein GAN losses
19calculate(Configs.generator_loss, 'wasserstein', lambda c: GeneratorLoss())
20calculate(Configs.discriminator_loss, 'wasserstein', lambda c: DiscriminatorLoss())23def main():Create configs object
25    conf = Configs()Create experiment
27    experiment.create(name='mnist_wassertein_dcgan', comment='test')Override configurations
29    experiment.configs(conf,
30                       {
31                           'discriminator': 'cnn',
32                           'generator': 'cnn',
33                           'label_smoothing': 0.01,
34                           'generator_loss': 'wasserstein',
35                           'discriminator_loss': 'wasserstein',
36                       })Start the experiment and run training loop
39    with experiment.start():
40        conf.run()
41
42
43if __name__ == '__main__':
44    main()