13import math
14
15import torch
16import torch.nn as nn
17
18from labml_nn.utils import clone_module_list
19from .feed_forward import FeedForward
20from .mha import MultiHeadAttention
21from .positional_encoding import get_positional_encoding31    def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
32        super().__init__()
33        self.linear = nn.Embedding(n_vocab, d_model)
34        self.d_model = d_model
35        self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))37    def forward(self, x: torch.Tensor):
38        pe = self.positional_encodings[:x.shape[0]].requires_grad_(False)
39        return self.linear(x) * math.sqrt(self.d_model) + pe42class EmbeddingsWithLearnedPositionalEncoding(nn.Module):49    def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
50        super().__init__()
51        self.linear = nn.Embedding(n_vocab, d_model)
52        self.d_model = d_model
53        self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True)55    def forward(self, x: torch.Tensor):
56        pe = self.positional_encodings[:x.shape[0]]
57        return self.linear(x) * math.sqrt(self.d_model) + pe60class TransformerLayer(nn.Module):d_model
是令牌嵌入的大小self_attn
是自我关注模块src_attn
是源关注模块(当它在解码器中使用时)feed_forward
是前馈模块dropout_prob
是自我关注和 FFN 后退学的概率69    def __init__(self, *,
70                 d_model: int,
71                 self_attn: MultiHeadAttention,
72                 src_attn: MultiHeadAttention = None,
73                 feed_forward: FeedForward,
74                 dropout_prob: float):82        super().__init__()
83        self.size = d_model
84        self.self_attn = self_attn
85        self.src_attn = src_attn
86        self.feed_forward = feed_forward
87        self.dropout = nn.Dropout(dropout_prob)
88        self.norm_self_attn = nn.LayerNorm([d_model])
89        if self.src_attn is not None:
90            self.norm_src_attn = nn.LayerNorm([d_model])
91        self.norm_ff = nn.LayerNorm([d_model])是否将输入保存到前馈层
93        self.is_save_ff_input = False95    def forward(self, *,
96                x: torch.Tensor,
97                mask: torch.Tensor,
98                src: torch.Tensor = None,
99                src_mask: torch.Tensor = None):在进行自我注意之前对向量进行归一化
101        z = self.norm_self_attn(x)通过自我关注,即关键和价值来自自我
103        self_attn = self.self_attn(query=z, key=z, value=z, mask=mask)添加自我关注的结果
105        x = x + self.dropout(self_attn)如果提供了来源,则从关注源获取结果。这是当你有一个关注编码器输出的解码器层
时110        if src is not None:归一化向量
112            z = self.norm_src_attn(x)注意源。即键和值来自源
114            attn_src = self.src_attn(query=z, key=src, value=src, mask=src_mask)添加来源关注结果
116            x = x + self.dropout(attn_src)标准化以进行前馈
119        z = self.norm_ff(x)如果已指定,则将输入保存到前馈图层
121        if self.is_save_ff_input:
122            self.ff_input = z.clone()通过前馈网络
124        ff = self.feed_forward(z)将前馈结果添加回来
126        x = x + self.dropout(ff)
127
128        return x131class Encoder(nn.Module):138    def __init__(self, layer: TransformerLayer, n_layers: int):
139        super().__init__()制作变压器层的副本
141        self.layers = clone_module_list(layer, n_layers)最终归一化层
143        self.norm = nn.LayerNorm([layer.size])145    def forward(self, x: torch.Tensor, mask: torch.Tensor):穿过每个变压器层
147        for layer in self.layers:
148            x = layer(x=x, mask=mask)最后,对向量进行归一化
150        return self.norm(x)153class Decoder(nn.Module):160    def __init__(self, layer: TransformerLayer, n_layers: int):
161        super().__init__()制作变压器层的副本
163        self.layers = clone_module_list(layer, n_layers)最终归一化层
165        self.norm = nn.LayerNorm([layer.size])167    def forward(self, x: torch.Tensor, memory: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):穿过每个变压器层
169        for layer in self.layers:
170            x = layer(x=x, mask=tgt_mask, src=memory, src_mask=src_mask)最后,对向量进行归一化
172        return self.norm(x)175class Generator(nn.Module):185    def __init__(self, n_vocab: int, d_model: int):
186        super().__init__()
187        self.projection = nn.Linear(d_model, n_vocab)189    def forward(self, x):
190        return self.projection(x)193class EncoderDecoder(nn.Module):200    def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: nn.Module, tgt_embed: nn.Module, generator: nn.Module):
201        super().__init__()
202        self.encoder = encoder
203        self.decoder = decoder
204        self.src_embed = src_embed
205        self.tgt_embed = tgt_embed
206        self.generator = generator从他们的代码来看,这很重要。使用 Glorot/fan_avg 初始化参数。
210        for p in self.parameters():
211            if p.dim() > 1:
212                nn.init.xavier_uniform_(p)214    def forward(self, src: torch.Tensor, tgt: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):通过编码器运行源码
216        enc = self.encode(src, src_mask)通过解码器运行编码和目标
218        return self.decode(enc, src_mask, tgt, tgt_mask)220    def encode(self, src: torch.Tensor, src_mask: torch.Tensor):
221        return self.encoder(self.src_embed(src), src_mask)223    def decode(self, memory: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
224        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)