The positional encoding encodes the position along the sequence into
a vector of size d_model
.
Where $1 \leq 2i, 2i + 1 \leq d_{model}$ are the feature indexes in the encoding, and $p$ is the position.
23import math
24
25import numpy as np
26import torch
27import torch.nn as nn
28
29from labml_helpers.module import Module
32class PositionalEncoding(Module):
33 def __init__(self, d_model: int, dropout_prob: float, max_len: int = 5000):
34 super().__init__()
35 self.dropout = nn.Dropout(dropout_prob)
36
37 self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len), False)
39 def forward(self, x: torch.Tensor):
40 pe = self.positional_encodings[:x.shape[0]].detach().requires_grad_(False)
41 x = x + pe
42 x = self.dropout(x)
43 return x
46def get_positional_encoding(d_model: int, max_len: int = 5000):
Empty encodings vectors
48 encodings = torch.zeros(max_len, d_model)
Position indexes
50 position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
$2 * i$
52 two_i = torch.arange(0, d_model, 2, dtype=torch.float32)
$10000^{\frac{2i}{d_{model}}$
54 div_term = torch.exp(two_i * -(math.log(10000.0) / d_model))
$PE_{p,2i} = sin\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$
56 encodings[:, 0::2] = torch.sin(position * div_term)
$PE_{p,2i + 1} = cos\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$
58 encodings[:, 1::2] = torch.cos(position * div_term)
Add batch dimension
61 encodings = encodings.unsqueeze(1).requires_grad_(False)
62
63 return encodings
66def _test_positional_encoding():
67 import matplotlib.pyplot as plt
68
69 plt.figure(figsize=(15, 5))
70 pe = get_positional_encoding(20, 100)
71 plt.plot(np.arange(100), pe[:, 0, 4:8].numpy())
72 plt.legend(["dim %d" % p for p in [4, 5, 6, 7]])
73 plt.title("Positional encoding")
74 plt.show()
75
76
77if __name__ == '__main__':
78 _test_positional_encoding()