15进口
16from typing import List
17
18import torch
19from torch import nn
20
21from labml import monit
22from labml_nn.neox.model import LayerGenerator
23from labml_nn.neox.utils import get_tokens, print_tokens
24from labml_nn.neox.utils.cache import get_cache要加载的图层列表。这用于测试。您可以将层的子集分配给变压器层,{0, 1}
使其仅将第一个层加载到变压器层。
29LAYERS = None提示完成
32PROMPT = 'Einstein was born in the German Empire, but moved to Switzerland in 1895, forsaking his German'35def infer(model: nn.Module, ids: List[int], device: torch.device):44    with torch.no_grad():获取代币
46        x = torch.tensor(ids)[None, :].to(device)评估模型
48        x = model(x)返回预测的代币
51    return x[0].max(dim=-1)[1].tolist()54def generate():设备
64    device = torch.device('cuda:0')加载图层
67    layers = list(LayerGenerator(is_clone_layers=True,
68                                 filter_layers=LAYERS,
69                                 dtype=torch.float16,
70                                 device=device,
71                                 ).load())
72
73    model = nn.Sequential(*layers)获取代币 ID
76    ids = get_tokens(PROMPT)运行模型
79    cache.set('state_ids', (None, 1))
80    with monit.section('Infer'):
81        next_token = infer(model, ids, device)[-1]追加预测的令牌
84    ids += [next_token]预测 100 个代币
87    for i in range(1, 100):设置状态以使用缓存的激活
89        cache.set('state_ids', (i, i + 1))获取下一个令牌。请注意,我们只将最后一个令牌提供给模型,因为我们缓存了先前令牌的键/值对。
92        with monit.section('Infer'):
93            next_token = infer(model, [next_token], device)[-1]追加预测的令牌
95        ids += [next_token]打印
97        print_tokens(ids, [ids])101if __name__ == '__main__':
102    generate()